205

a)
\lim_{x\rightarrow4}\ \left(\frac{1}{2}-\frac{1}{x}\right)
\frac{1}{2}-\frac{1}{4}
\frac{2}{4}-\frac{1}{4}=\frac{1}{4}
b)
\lim_{x\rightarrow5}\ \frac{x^2-25}{x-5}
\frac{5^2-25}{5-5}=\frac{0}{0}{,}\ voidaan\ siis\ sieventää\ lauseketta
\frac{\left(x-5\right)\left(x+5\right)}{x-5}=x+5
5+5=10
c)
\lim_{x\rightarrow3}\ \frac{9-x^2}{3x-9}
\frac{9-3^2}{3\cdot3-9}=\frac{0}{0}{,}\ sievennetään
\frac{\left(3+x\right)\left(-x+3\right)}{3\left(-x+3\right)}=\frac{3+x}{3}=\frac{6}{3}=2