Teksti
4.3 Korkeamman asteen epäyhtälö
Lause
Polynomifunktion merkki voi vaihtua vain nollakohdassa.
Esim. Tutki milloin funktio
saa positiivisia arvoja
Ratkaistaan nollakohdat
tulon nollasääntö
tai
tehdään merkkikaavio:
funktio saa positiivisia arvoja kun f(x)=0, tämä toteutuu kun x<-2 tai 1/2<x<2

ratkaistaan nollakohdat

%3D0)


%3D2%5Cleft(-2%5Cright)%5E3%2B3%5Cleft(-2%5Cright)%5E2-2%3D-16%2B12-2%3D-6%3C0)
%5Capprox-0%7B%2C%7D094%3C0)
toisen asteen yhtälö, voidaan käyttää ratkaisukaavaa
nollakohdat on x=0, x=-1/2 ja x=1
tutkitaan funktion merkkiä laskemalla funktion arvoja testikohdissa
tehdään merkkikaavio
v: funktio saa pienempiä tai yhtäsuuria arvoja kuin nolla kun 