173

2\sin\ \frac{x}{3}+\sqrt{2}=0
\sin\ \frac{x}{3}=-\frac{\sqrt{2}}{2}
\sin\ \frac{x}{3}=-\frac{1}{\sqrt{2}}
\frac{5\pi}{4}
kaikki ratkaisut ovat:
\frac{x}{3}=\frac{5\pi}{4}+n\cdot2\pi
x=\frac{15\pi}{4}+n\cdot6\pi
tai
\frac{x}{3}=\pi-\frac{5\pi}{4}+n\cdot2\pi
x=-\frac{3\pi}{4}+n\cdot6\pi
 
halutaan ratkaisut välillä ]-12π,12π[
eli
\begin{matrix}
n&x=\frac{15\pi}{4}+n\cdot6\pi&x=-\frac{3\pi}{4}+n\cdot6\pi\\
0&\frac{15\pi}{4}&-\frac{3\pi}{4}\\
1&\frac{39\pi}{4}&\frac{21\pi}{4}\\
-1&-\frac{9\pi}{4}&-\frac{27\pi}{4}\\
2&\frac{63\pi}{4}\left(hyl.\right)&\ \frac{45\pi}{4}\\
-2&-\frac{33\pi}{4}&x=-\frac{51\pi}{4}\ \left(hyl.\right)\\
-3&-\frac{57\pi}{4}\left(hyl.\right)&
\end{matrix}
ratkaisuista halutulle välille kuuluvat -\frac{33\pi}{4}{,}\ -\frac{27\pi}{4}{,}\ -\frac{9\pi}{4}{,}\ -\frac{3\pi}{4}{,}\ \frac{15\pi}{4}{,}\ \frac{21\pi}{4}{,}\ \frac{35\pi}{4}\ tai\ \frac{45\pi}{4}