Polynomials: Zeroes of polynomials
Definition
Consider the polynomial [[$P(x)=2x-6$]]. Because
[[$$P(3)=2\cdot 3 -6=0,$$]]
it is said that [[$x=3$]] is a zero of [[$P(x)$]].
[[$$P(3)=2\cdot 3 -6=0,$$]]
it is said that [[$x=3$]] is a zero of [[$P(x)$]].
Tasks
- Find the zero of [[$Q(x)=5x-10$]].
- Find the zero of [[$R(x)=\frac{1}{2}x-10$]].
- Find the zero of [[$S(x)=3x+10$]].
- Find the zero of [[$T(x)=x^2 -9$]].
- Find the zero of [[$U(x)=x^3-8$]].
- Find the zeroes of [[$V(x)=5x^2-500$]].
- Find the zeroes of [[$W(x)=3x^3-192$]].
- Find the zeroes of [[$X(x)=9x^2-4$]].
- Find the zeroes of [[$Y(x)=9x^2+4$]].
- Find the zeroes of [[$Z(x)=125x^2-100$]].
- Find the zeroes of [[$A(x)=(x-2)(x-10)$]].
- Find the zeroes of [[$B(x)=5(x-10)(x+1)$]].
- Find the zeroes of [[$C(x)=(x-1)(x+1)(x+2)$]].
- Find the zeroes of [[$D(x)=(x^2+1)(x^2-1)$]].