Arviointi

Online-koe vai paperinen koe - yliopistossa

ABSTRACT: Taking a test online rather than on paper is becoming increasingly common. However, there has been little research directly addressing the testing mode (taking a test on paper or online) in chemistry courses, particularly when students take multiple practice tests before an exam. Two studies were conducted to investigate student performance on two proctored general chemistry practice tests as a function of the testing mode. Data were collected in 2013 (Study 1) and again in 2015 (Study 2). The participants were 422 undergraduate students (Study 1 N = 207 and Study 2 N = 215) from a first-semester general chemistry course at a midwestern university. In each study students took two practice tests. Each test included 17 algorithmic, 5 conceptual, and 2 definition questions and was administered on computer or paper. The mode combination of Test 1−Test 2 identified the four conditions: Computer−Computer, Computer−Paper, Paper−Computer, and Paper−Paper. The results show minor differences between online and paper modes. In particular, no significant difference was found between Computer−Paper and Paper−Paper conditions. This pattern suggests that online testing is a promising alternative to the traditional paper-and-pencil mode most often used in chemistry.

Prisacari_Comparing_Using_Computer_and_PaperBasedTests.pdf

ScientificPractise -ajattelu monivalintojen rakentamisessa

ABSTRACT: As chemists, we understand that science is more than a set of disconnected facts. It is a way of investigating and understanding our natural world that involves things like asking questions, analyzing data, identifying patterns, constructing explanations, developing and using models, and applying core concepts to other situations. This paper uses the concept of threedimensional (3D) learning, presented in A Framework for K-12 Science Education, to reconceptualize and develop assessment items that require students to integrate chemistry core ideas with scientific practices and crosscutting concepts. Developing 3D assessments from scratch is time-consuming and beyond the scope of most faculty work. Here we present an alternate approach: We provide a detailed description of ways in which instructors can take current assessment questions and modify them to align with three-dimensional learning by focusing on the evidence that is sought about what students know and can do with their knowledge.

AssessmentTasks_to_Support3DLearning.pdf

Kokeellisuuden kriteeriperustainen arviointi kemiassa

Aija Ahtinevan (Turun yliopisto) artikkeli asiasta:
Kokeeellisuuden_arviointi_kriteeriperustainen.pdf

Tiivistelmä:
Luonnontieteellisen ajattelun periaatteiden mukaan kokeellisuus on kemian opetuksen keskeinen lähtökohta. Johdannossa esitetään lyhyesti nykyisen ja lausunnolla olleen perusopetuksen ja nykyisen lukion kemian opetussuunnitelmien kokeellista työskentelyä ja sen arviointia koskevaa aluetta. Saadakseen oppimisen kannalta opetussuunnitelman ja luonnontieteellisen ajattelun asettaman merkityksen ja arvostuksen, oppilaiden kokeellista työskentelyä pitää monipuolisesti ja kannustavasti ryhtyä arvioimaan. Toisessa luvussa tarkastellaan kokeellista työskentelyä oppimismenetelmänä. Usein tutkimuksissakin on esitetty, että kokeellista työskentelyä ”harrastetaan” oppitunnin piristämiseksi, motivaation herättäjäksi eikä niinkään harkitusti jonkun asian tavoitteellista oppimista varten. Vasta 2000-luvulla on alettu systemaattisesti tutkia, mitä kokeellisessa tehtävässä voidaan oppia. Tässä artikkelissa esitellään kaksi erillistä tutkimusta. Abrahams et. al. (2008 ja 2012) on tutkinut kokeellisia tehtäviä luonnontieteiden oppitunneilla ja tehnyt oppimisen tasoista nelikenttäanalyysin. Toinen tässä esiteltävä tutkimus (Lewthwaite 2014) käsittelee opettajien kokeellisten tehtävien tyyppivalintoja ja valinnan perusteluja. Kummassakin tutkimuksessa korostetaan arvioinnin tärkeyttä oppimisen edistäjänä. Lopuksi tässä artikkelissa esitetään peruskoulun ja lukion kemian opetukseen sopivia tavoitteiltaan eteneviä kokeellisen työskentelyn tehtäviä ja arviointimalleja. Kokeellisen työskentelyn tehtäväesimerkkien lähtökohtina ja perusteluina käytetään nelikenttäanalyysin tuloksena syntyneitä oppimistasoja ja kokeellisen työskentelyn kolmiportaista tavoitehierarkiaa (Doran et. al 2002).

Monivalinnat arvioinnissa

Marcy H. Towns (2014). Guide To Developing High-Quality, Reliable, and Valid MultipleChoice Assessments, Journal of Chemical Education. dx.doi.org/10.1021/ed500076x| J. Chem. Educ. 2014, 91, 1426−1431

Abstract
Chemistry faculty members are highly skilled in obtaining, analyzing, and interpreting physical measurements, but often they are less skilled in measuring student learning. This work provides guidance for chemistry faculty from the research literature on multiple-choice item development in chemistry. Areas covered include content, stem, and response construction; item analysis; item difficulty; and item discrimination. The goal is to help faculty construct high-quality, reliable, and valid multiple-choice items to evaluate students’ ability to meet learning objectives and to demonstrate proficiency in the content domain under study. Using item-writing guidelines based upon the research literature allows faculty to create assessments that are reliable and valid, with greater ability to discriminate between high- and low-achieving students.

Conclusion
The research-based resources described herein can help faculty develop multiple-choice items for exams and quizzes that measure student achievement of learning objectives and proficiency in a content domain. In the laboratory chemists collect measurements and seek to obtain the best measures possible for the phenomena under study. In the classroom faculty should have the same goal. Using item-writing guidelines based upon research allows faculty to create assessments that are more reliable and valid, with greater ability to discriminate between high- andlow-achieving students than rulesderived fromprivate empiricism.23 Faculty can use student performance, item difficulty, discrimination, and response distribution to interpret the students’ ability to meet course learning objectives. Assessment outcomes can suggest meaningful changes in a course relevant to the learning objectives and the curriculum that benefit students and faculty.

Peda.net käyttää vain välttämättömiä evästeitä istunnon ylläpitämiseen ja anonyymiin tekniseen tilastointiin. Peda.net ei koskaan käytä evästeitä markkinointiin tai kerää yksilöityjä tilastoja. Lisää tietoa evästeistä