3.1 Derivaatan ja derivoituvuuden tarkastelua

301
a) 1
b) 0,25
c) -2
d) 0

302
I, IV

303
f'\left(x\right)=4x-1
f'\left(3\right)=4\cdot3-1=11
f'\left(x\right)=\lim_{h\rightarrow0}\left(\frac{f\left(3+h\right)-f\left(3\right)}{h}\right)=\lim_{h\rightarrow0}\left(\frac{2\cdot\left(3+h\right)^2-\left(3+h\right)-15}{h}\right)=\lim_{h\rightarrow0}\left(\frac{2\cdot\left(9+5h+h^2\right)-3+h-15}{h}\right)=\lim_{h\rightarrow0}\left(\frac{2h^2+11h}{h}\right)=\lim_{h\rightarrow0}\left(2h+11\right)=2\cdot0+11=11
 
304
I Ei
II Ei
III Kyllä
IV Ei
 
305 
a)
5h^2-30h+65
b)
f'\left(1\right)=65
c)
f'\left(t\right)=15t^2-90t+140
f'\left(1\right)=15-90+140=65

306
f\left(x\right)=-\left(x-3\right)^2
f'\left(x\right)=-x^2+6x-9=-2x+6
f'\left(-2\right)=-2\cdot\left(-2\right)+6=10

307
a)
f'\left(x\right)=-2x
f'\left(x\right)=-2\left(-2\right)=4
b)
f'\left(x\right)=\lim_{h\rightarrow0}\left(\frac{f\left(-2+h\right)-f\left(-2\right)}{h}\right)=\lim_{h\rightarrow0}\left(\frac{\left(1-\left(-2+h\right)^2-\left(1-4\right)\right)}{h}\right)=\lim_{h\rightarrow0}\left(\frac{\left(1-\left(h^2-4h+4\right)\right)+3}{h}\right)=\lim_{h\rightarrow0}\left(\frac{4-\left(h^2-4h+4\right)}{h}\right)=\lim_{h\rightarrow0}\left(4-h-4+4\right)=4-0-4+4=4
 
308
a)
f\left(x\right)=x^2+x-1
f'\left(x\right)=\lim_{h\rightarrow0^-}\left(\frac{f\left(1+h\right)-f\left(1\right)}{h}\right)=\lim_{h\rightarrow0^-}\left(\frac{\left(\left(1+h\right)^2+\left(1+h\right)-1\right)-1}{h}\right)=\lim_{h\rightarrow0^-}\left(\frac{\left(\left(h^2+2h+1\right)+\left(1+h\right)-1\right)-1}{h}\right)=\lim_{h\rightarrow0^-}\left(\frac{h^2+3h+2-1-1}{h}\right)=\lim_{h\rightarrow0^-}\left(h+3+2-1-1\right)=0+3+2-2=3
b)
f\left(x\right)=-x^2+5x-3
\lim_{h\rightarrow0^+}\left(\frac{f\left(1+h\right)-f\left(1\right)}{h}\right)=\lim_{h\rightarrow0^+}\left(\frac{\left(-\left(1+h\right)^2+5\cdot\left(1+h\right)-3\right)-\left(-1+5-3\right)}{h}\right)=\lim_{h\rightarrow0^+}\left(\frac{\left(-\left(h^2+2h+1\right)+5+5h-3\right)-1}{h}\right)=\lim_{h\rightarrow0^+}\left(\frac{-h^2-2h+5h-1+5-3-1}{h}\right)=\lim_{h\rightarrow0^+}\left(\frac{-h^2+3h}{h}\right)=\lim_{h\rightarrow0^+}\left(-h+3\right)=-0+3=3
c)
On
d) 
k=3
y_0=1
x_0=1
\left(y-y_0\right)=k\left(x-x_0\right)
y-1=3x-3
y=3x-2

309
f\left(x\right)=2x+1
\lim_{h\rightarrow0^-}^{ }\left(\frac{f\left(-1+h\right)-f\left(-1\right)}{h}\right)=\lim_{h\rightarrow0^-}^{ }\left(\frac{\left(2\cdot\left(-1+h\right)+1\right)+1}{h}\right)=\lim_{h\rightarrow0^-}^{ }\left(\frac{-2+2h+1+1}{h}\right)=\lim_{h\rightarrow0^-}^{ }\left(\frac{2h}{h}\right)=2
f\left(x\right)=x^2+3x+1
\lim_{h\rightarrow0^+}\left(\frac{f\left(-1+h\right)-f\left(-1\right)}{h}\right)=\lim_{h\rightarrow0^+}\left(\frac{\left(\left(-1+h\right)\right)^2+3\cdot\left(-1+h\right)+1-\left(-1-3+1\right)}{h}\right)=\lim_{h\rightarrow0^+}\left(\frac{\left(h^2-2h+1\right)+3h-3+1+1+3-1}{h}\right)=\lim_{h\rightarrow0^+}\left(\frac{h^2-2h+3h-2}{h}\right)=\lim_{h\rightarrow0^+}\left(\frac{h^2+h-2}{h}\right)=\lim_{h\rightarrow0^+}\left(h+1-2\right)=0+1-2=-1
-1\ne2
Ei ole

310