MAA4 - ANALYYTTINEN GEOMETRIA JA VEKTORIT (3 op)

Tavoitteet

Yleiset tavoitteet

Opintojakson tavoitteena on, että opiskelija

  • ymmärtää, kuinka analyyttinen geometria luo yhteyksiä geometristen ja algebrallisten käsitteiden välille
  • ymmärtää yhtälön geometrisen merkityksen
  • osaa ratkaista muotoa | f(x) | = a tai | f(x) | = | g(x) | olevia itseisarvoyhtälöitä
  • ymmärtää vektorikäsitteen ja perehtyy vektorilaskennan perusteisiin
  • osaa tutkia kaksiulotteisen koordinaatiston pisteitä, etäisyyksiä ja kulmia vektoreiden avulla
  • osaa ratkaista tasogeometrian ongelmia vektoreiden avulla
  • osaa käyttää ohjelmistoja käyrien ja vektoreiden tutkimisessa sekä niihin liittyvissä sovelluksissa.

Ohjelmistotaidot 

Opintojakson tavoitteena on, että opiskelija 

  • osaa piirtää erilaisia tasokäyriä ja havainnollistaa käyräparvea esim. liukusäätimellä 
  • osaa ratkaista yhtälöryhmän symbolisesti (esim. paraabelin lausekkeen muodostaminen annettujen pisteiden avulla) 
  • oppii ratkaisemaan itseisarvoyhtälön graafisesti ja symbolisesti sekä havainnoimaan, miten käyrät y=f(x) ja y=|f(x)| liittyvät toisiinsa 
  • harjaantuu sujuvuuteen mallikuvan piirtämisessä ja laskemalla saadun vastauksen tarkistamisessa 
  • oppii piirtämään vektoreita sekä tekemään vektorien laskutoimituksia (vektoreiden yhteenlasku, luvulla kertominen, pituuden laskeminen, yksikkövektorin muodostaminen, pistetulo ja vektoreiden välisen kulman laskeminen) symbolisesti.

Keskeiset sisällöt

Keskeiset sisällöt

  • käyrän yhtälö
  • suoran, ympyrän ja paraabelin yhtälö
  • yhtälöryhmä
  • suorien yhdensuuntaisuus ja kohtisuoruus
  • itseisarvoyhtälö
  • pisteen etäisyys suorasta
  • vektoreiden perusominaisuudet
  • tason vektoreiden yhteen- ja vähennyslasku sekä tason vektorin kertominen luvulla
  • tason vektoreiden pistetulo, tason vektoreiden välinen kulma

Tarkennuksia sisältöihin

  • Käyrän yhtälö: Karteesinen tasokoordinaatisto ja sen piste, suora, ympyrä sekä paraabeli; Yhtälön toteuttavat xy-tason pisteet muodostavat xy-tason käyrän; Suoran ja ympyrän yhtälöt (eri esitysmuodot) sekä neliöksi täydentäminen ympyrän tai paraabelin yhtälön käsittelyn yhteydessä; Ympyrän tangentit; Paraabeli (akseli on koordinaattiakselien suuntainen, polttopiste ja johtosuora) ja paraabelin yhtälön eri esitysmuodot (nollakohtamuotoinen ja huippupistemuotoinen yhtälö); Yhtälöpari ja menetelmät eri leikkauspisteiden ratkaisemiseen (kaksi suoraa, ympyrä ja suora, paraabeli ja suora jne.) ja lineaarisen yhtälöryhmän ratkaisuperiaate.
  • Itseisarvo: Itseisarvon määritelmä ja yhtälöt, joiden ratkaiseminen perustuu määritelmään. (Neliöön korotus menetelmä voidaan esitellä, mutta itseisarvoepäyhtälö on poistettu opetussuunnitelman sisällöistä.)
  • Vektoreiden perusominaisuudet: Vektorilla on suunta ja pituus. Se on objekti, joka ilmaisee siirtymää (tietyn verran, tiettyyn suuntaan). Keskeisten käsitteiden määritelmät sekä merkinnät liittyen nollavektoriin, vastavektoriin, yhdensuuntaisuuteen (samansuuntaisuus, vastakkaissuuntaisuus ja kohtisuoruus), vektorin pituus, vektorin suuntainen yksikkövektori ja vektorien välinen kulma.
  • Vektorit: Tarkastelun painopiste on xy-tason vektoreissa. Koordinaatistossa olevan vektorin esittäminen x- ja y-suuntaisten komponenttien avulla (i- ja j-kantavektorit). Yleinen kannan käsite voidaan sivuuttaa. Suorien yhdensuuntaisuus ja kohtisuoruus, suuntakulma ja suorien välinen kulma voidaan käsitellä analyyttisen geometrian menetelmillä (kulmakertoimen avulla) tai vektorien avulla (yhdensuuntaiset vektorit, pistetulo).

Laaja-alaisen osaamisen tavoitteet

Laaja-alaisen osaamisen osa-alueista opintojaksolla painottuu hyvinvointiosaaminen sekä monitieteinen ja luova osaaminen. Tämä voi näkyä opintojaksolla esimerkiksi niin, että opiskelijaa ohjataan tavoitteellisesti tunnistamaan ja hyödyntämään omia vahvuuksiaan ja toisaalta kehittämiskohteitaan sekä huomaamaan, että menestyksellinen matematiikan opiskelu vaatii pitkäjänteistä työntekoa ja sinnikkyyttä. Opetuksessa rohkaistaan opiskelijaa tarkastelemaan ongelmia uudella tavalla, yhdistelemään asioita sekä soveltamaan matematiikan menetelmiä eri oppiaineissa. Monitieteellinen lähestymistapa voi motivoida oppimaan uutta ja innostaa uteliaisuuteen sekä merkityksien etsimiseen.

Ehdotuksia työskentelytavoista

Opintojaksossa käytetään monipuolisia ja vaihtelevia työtapoja, joissa opiskelijat työskentelevät yksin ja yhdessä. Tällä vahvistetaan muun muassa vuorovaikutusosaamista. Työtapoina voidaan käyttää esimerkiksi ryhmätöitä, parityöskentelyä.

Opintojakson arviointi

Opintojaksolla toteutetaan monipuolisesti sekä formatiivista että summatiivista arviointia, painottaen opintojakson keskeisiä tavoitteita ja sisältöjä. Formatiivinen arviointi on lähinnä opiskelijaa opinnoissa eteenpäin auttavaa, ei dokumentoitavaa palautetta. Opintojaksolla voidaan myös ohjata opiskelijoita itse- ja vertaisarvioinnin sekä arviointikeskusteluiden pariin. Summatiivinen arviointi koostuu esimerkiksi opiskelijan tuotoksista ja/tai tavoitteiden mukaista osaamista mittaavista kokeista, testeistä tai oppimistehtävistä saaduista arvosanoista. Laaja-alaisen osaamisen osa-alueita arvioidaan formatiivisesti opintojakson aikana tukien opiskelijan oppimista.


Opintojakson arviointi perustuu monipuoliseen näyttöön ja arvioinnilla tuetaan opiskelijan matemaattisen ajattelun ja itseluottamuksen kehittymistä sekä ylläpidetään ja vahvistetaan opiskelumotivaatiota. Arviointi ohjaa opiskelijaa arvioimaan omaa osaamistaan sekä kehittämään matematiikan osaamistaan ja ymmärtämistään ja pitkäjänteisen työskentelyn taitojaan.


Opintojakso arvioidaan numeerisesti asteikolla 4-10.