Tilastot ja todennäköisyys (MAA8) 2 op
Tavoitteena on, että opiskelija
- osaa havainnollistaa diskreettiä tilastollista jakaumaa sekä määrittää ja tulkita jakauman tunnuslukuja
- osaa havainnollistaa kahden muuttujan yhteisjakaumaa sekä määrittää korrelaatiokertoimen ja regressiokäyrän
- perehtyy kombinatorisiin menetelmiin
- perehtyy todennäköisyyden käsitteeseen ja laskusääntöihin
- ymmärtää diskreetin todennäköisyysjakauman käsitteen ja oppii määrittämään jakauman odotusarvon ja tulkitsemaan sitä
- osaa käyttää ohjelmistoja digitaalisessa muodossa olevan datan hakemisessa, käsittelyssä ja tutkimisessa sekä tilastollisen tiedon esittämisessä
- osaa hyödyntää ohjelmistoja jakaumien havainnollistamisessa, tunnuslukujen määrittämisessä sekä todennäköisyyksien laskemisessa.
Keskeiset sisällöt
- keskiluvut ja keskihajonta
- korrelaatio ja lineaarinen regressio
- klassinen ja tilastollinen todennäköisyys
- permutaatiot ja kombinaatiot
- todennäköisyyden laskusäännöt
- binomijakauma
- diskreetti todennäköisyysjakauma
- diskreetin jakauman odotusarvo
Laaja-alainen osaaminen
Satunnaisilmiöiden tunnistaminen sekä ymmärrys satunnaisuuteen perustuvien pelien ja ilmiöiden toimintalogiikasta antaa matemaattisen pohjan ymmärtää rahapelien haitallisuuden. Näin matematiikan opiskelu vahvistaa hyvinvointiosaamista.Satunnaisuuden ja todennäköisyyksien tarkastelu tilastojen kautta valmistaa opiskelijaa maltilliseen yhteiskunnalliseen keskusteluun. Opintojaksolla tutustutaan tilastollisiin menetelmiin erityisesti tietokoneohjelmistoja hyödyntäen. Näiltä osin matematiikan vahvistaa yhteiskunnallista osaamista ja monitieteistä ja luovaa osaamista.
Arviointi
Opintojakso arvioidaan arvosanalla 4-10.Opintojakson tavoitteiden ja keskeisten sisältöjen hallintaa arvioidaan esimerkiksi opintojakson aikana tai päätteeksi järjestettävillä testeillä ja laajemmilla kokeilla, tarkkailemalla opintojakson aikaisen työn määrää ja laatua sekä mahdollisesti harjoitustöillä, joita voi olla yksi tai useampia. Testit voivat olla yksilö- tai ryhmätestejä. Matematiikan luonteesta johtuen kiinnitetään erityistä huomiota opiskelijan kirjalliseen ilmaisuun: hyvässä matemaattisessa ilmaisussa terminologian käyttö on mielekästä, päätelmät hyvin johdettu ja tulokset perusteltu.
Opintojakson aikaista työskentelyä arvioidaan esimerkiksi tarkkailemalla kuinka opiskelija selviytyy annetuista tehtävistä sekä siitä missä määrin hän omaksuu käytettävät ohjelmistot. Eduksi katsotaan oman tason mukainen pitkäjänteinen työskentely. Tehtäväksi määrättyjen tehtävien valmiiksi saattaminen on osa jatkuvaa näyttöä.
Opiskelija voi osoittaa osaamistaan myös suullisesti oppituntien aikana. Opettaja antaa opintojakson aikana palautetta, joka tukee opiskelijan oppimisprosessia. Palaute on luonteeltaan positiivista ja kannustavaa, ja siinä otetaan huomioon opiskelijan kehittyminen opintojen aikana. Palautteen antamisen pohjaksi voidaan opintojakson aikana antaa tehtäväksi erilaisia kirjallisia tai suullisia tehtäviä ja testejä.
Opintojakson aikainen itsearviointi ohjaa opiskelijaa ponnistelemaan päämääriensä saavuttamiseksi sekä tarkkailemaan edistymistään opinnoissaan. Opintojakson aikana voidaan järjestää tilaisuuksia vertaisarvioinnille.