Funktiot ja yhtälöt 2 (MAA5) 2 op

Tavoitteena on, että opiskelija

  • tutustuu ilmiöiden matemaattiseen mallintamiseen sini- ja kosinifunktioiden sekä eksponentti- ja logaritmifunktioiden avulla
  • tutkii sini- ja kosinifunktioita yksikköympyrän symmetrioiden avulla
  • osaa ratkaista sellaisia trigonometrisia yhtälöitä, jotka ovat tyyppiä sin f(x) = a tai sin f(x) = sin g(x)
  • osaa soveltaa sini- ja kosinifunktioiden yhteyttä sin2 x + cos2 x = 1
  • tuntee eksponentti- ja logaritmifunktioiden ominaisuudet ja osaa ratkaista niihin liittyviä yhtälöitä
  • osaa käyttää ohjelmistoja funktioiden tutkimisessa, yhtälöiden ratkaisemisessa ja sovellusten yhteydessä.


Keskeiset sisällöt

  • suunnattu kulma ja radiaani
  • yksikköympyrä
  • sini- ja kosinifunktiot symmetria- ja jaksollisuusominaisuuksineen
  • sini- ja kosiniyhtälöiden ratkaiseminen
  • murtopotenssi ja sen yhteys juureen
  • eksponenttifunktiot ja -yhtälöt
  • logaritmi ja logaritmin laskusäännöt
  • logaritmifunktiot ja -yhtälöt


Laaja-alainen osaaminen

Opintojaksossa jatketaan tietokoneohjelmistoja monipuolista hyödyntämistä sekä ohjelmistojen mahdollisuuksien ja rajoitusten arviointia. Näin vahvistuu monitieteinen ja luova osaaminen.

Monia ympäristöön liittyviä ilmiöitä ei voi täysin ymmärtää, ellei ymmärrä näiden taustalla vaikuttavia matemaattisia malleja. Opintojaksossa tutustutaan eksponentiaaliseen, trigonometriseen sekä logaritmiseen malliin. Matematiikan opiskelu tukee tällä tavoin eettisyyttä ja ympäristöosaamista.

Matemaattiset mallit ovat oleellisia myös talouden ymmärtämisen kannalta. Tältä osin matematiikan opiskelu vahvistaa myös yhteiskunnallista osaamista.

Arviointi

Opintojakso arvioidaan arvosanalla 4-10.

Opintojakson tavoitteiden ja keskeisten sisältöjen hallintaa arvioidaan esimerkiksi opintojakson aikana tai päätteeksi järjestettävillä testeillä ja laajemmilla kokeilla, tarkkailemalla opintojakson aikaisen työn määrää ja laatua sekä mahdollisesti harjoitustöillä, joita voi olla yksi tai useampia. Testit voivat olla yksilö- tai ryhmätestejä. Matematiikan luonteesta johtuen kiinnitetään erityistä huomiota opiskelijan kirjalliseen ilmaisuun: hyvässä matemaattisessa ilmaisussa terminologian käyttö on mielekästä, päätelmät hyvin johdettu ja tulokset perusteltu.

Opintojakson aikaista työskentelyä arvioidaan esimerkiksi tarkkailemalla kuinka opiskelija selviytyy annetuista tehtävistä sekä siitä missä määrin hän omaksuu käytettävät ohjelmistot. Eduksi katsotaan oman tason mukainen pitkäjänteinen työskentely. Tehtäväksi määrättyjen tehtävien valmiiksi saattaminen on osa jatkuvaa näyttöä.

Opiskelija voi osoittaa osaamistaan myös suullisesti oppituntien aikana. Opettaja antaa opintojakson aikana palautetta, joka tukee opiskelijan oppimisprosessia. Palaute on luonteeltaan positiivista ja kannustavaa, ja siinä otetaan huomioon opiskelijan kehittyminen opintojen aikana. Palautteen antamisen pohjaksi voidaan opintojakson aikana antaa tehtäväksi erilaisia kirjallisia tai suullisia tehtäviä ja testejä.

Opintojakson aikainen itsearviointi ohjaa opiskelijaa ponnistelemaan päämääriensä saavuttamiseksi sekä tarkkailemaan edistymistään opinnoissaan. Opintojakson aikana voidaan järjestää tilaisuuksia vertaisarvioinnille.