Johdetun kaavan nojalla putoamiskiihtyvyys [[$ g $]] riippuu pudotusta matkasta [[$ s $]] ja putoamisajan neliöstä [[$ t^2 $]]. Tämän vuoksi ajan tarkka mittaaminen painottuu, sillä eksponentti kasvattaa mittausvirheitä kokoluokalla. Mittausvirhe tasapainottuu, kun toistat saman mittauksen useasti.
[[$ s = $]] m, [[$ t = $]] s [[$\Rightarrow$]] [[$ g = \frac{2s}{t^2} = $]] [[$\frac{\text{m}}{\text{s}^2}$]]
[[$ s = $]] m, [[$ t = $]] s [[$\Rightarrow$]] [[$ g = \frac{2s}{t^2} = $]] [[$\frac{\text{m}}{\text{s}^2}$]]
[[$ s = $]] m, [[$ t = $]] s [[$\Rightarrow$]] [[$ g = \frac{2s}{t^2} = $]] [[$\frac{\text{m}}{\text{s}^2}$]]
[[$ s = $]] m, [[$ t = $]] s [[$\Rightarrow$]] [[$ g = \frac{2s}{t^2} = $]] [[$\frac{\text{m}}{\text{s}^2}$]]
[[$ s = $]] m, [[$ t = $]] s [[$\Rightarrow$]] [[$ g = \frac{2s}{t^2} = $]] [[$\frac{\text{m}}{\text{s}^2}$]]
[[$ s = $]] m, [[$ t = $]] s [[$\Rightarrow$]] [[$ g = \frac{2s}{t^2} = $]] [[$\frac{\text{m}}{\text{s}^2}$]]
[[$ s = $]] m, [[$ t = $]] s [[$\Rightarrow$]] [[$ g = \frac{2s}{t^2} = $]] [[$\frac{\text{m}}{\text{s}^2}$]]
[[$ s = $]] m, [[$ t = $]] s [[$\Rightarrow$]] [[$ g = \frac{2s}{t^2} = $]] [[$\frac{\text{m}}{\text{s}^2}$]]
[[$ s = $]] m, [[$ t = $]] s [[$\Rightarrow$]] [[$ g = \frac{2s}{t^2} = $]] [[$\frac{\text{m}}{\text{s}^2}$]]
[[$ s = $]] m, [[$ t = $]] s [[$\Rightarrow$]] [[$ g = \frac{2s}{t^2} = $]] [[$\frac{\text{m}}{\text{s}^2}$]]
Keskiarvona [[$ \bar{g} = \frac{\sum g}{10} = $]] [[$\frac{\text{m}}{\text{ s}^2}$]].
Peruuta