5.6.3 Matematiikan lyhyt oppimäärä

5.6.3 Matematiikan lyhyt oppimäärä

Matematiikan lyhyen oppimäärän opetuksen tehtävänä on tarjota valmiuksia hankkia, käsitellä ja ymmärtää matemaattista tietoa ja käyttää matematiikkaa elämän eri tilanteissa ja jatko-opinnoissa. Opetus pyrkii myös antamaan opiskelijalle selkeän käsityksen matematiikan merkityksestä yhteiskunnan kehityksessä sekä sen soveltamismahdollisuuksista arkielämässä ja monissa eri tieteissä.


Opetuksen tavoitteet

Matematiikan lyhyen oppimäärän opetuksen tavoitteena on, että opiskelija

  • osaa käyttää matematiikkaa jokapäiväisen elämän ja yhteiskunnallisen toiminnan apuvälineenä
  • saa myönteisiä oppimiskokemuksia matematiikan parissa työskennellessään, oppii luottamaan omiin kykyihinsä, taitoihinsa ja ajatteluunsa ja rohkaistuu kokeilevaan, tutkivaan ja keksivään oppimiseen
  • hankkii sellaisia matemaattisia tietoja, taitoja ja valmiuksia, jotka antavat riittävän pohjan jatko-opinnoille
  • sisäistää matematiikan merkityksen välineenä, jolla ilmiöitä voidaan kuvata, selittää ja mallintaa ja jota voidaan käyttää johtopäätösten tekemisessä
  • kehittää käsitystään matemaattisen tiedon luonteesta ja sen loogisesta rakenteesta
  • harjaantuu vastaanottamaan ja analysoimaan viestimien matemaattisessa muodossa tarjoamaa informaatiota ja arvioimaan sen luotettavuutta
  • tutustuu matematiikan merkitykseen kulttuurin kehityksessä
  • osaa käyttää kuvioita, kaavioita ja malleja ajattelun apuna
  • osaa käyttää tarkoituksenmukaisia matemaattisia menetelmiä, teknisiä apuvälineitä ja tietolähteitä.



Pakolliset kurssit


Lausekkeet ja yhtälöt (MAB2)

Tavoitteet

Kurssin tavoitteena on, että opiskelija

  • harjaantuu käyttämään matematiikkaa jokapäiväisen elämän ongelmien ratkaisemisessa ja oppii luottamaan omiin matemaattisiin kykyihinsä
  • ymmärtää lineaarisen riippuvuuden, verrannollisuuden ja toisen asteen polynomifunktion käsitteet
  • vahvistaa yhtälöiden ratkaisemisen taitojaan ja oppii ratkaisemaan toisen asteen yhtälöitä
  • osaa käyttää teknisiä apuvälineitä polynomifunktion tutkimisessa ja polynomiyhtälöihin sekä polynomifunktioihin liittyvien sovellusongelmien ratkaisussa.

Keskeiset sisällöt

  • suureiden välinen lineaarinen riippuvuus ja verrannollisuus
  • ongelmien muotoileminen yhtälöiksi
  • yhtälöiden ja yhtälöparien graafinen ja algebrallinen ratkaiseminen
  • ratkaisujen tulkinta ja arvioiminen
  • toisen asteen polynomifunktio ja toisen asteen yhtälön ratkaiseminen



Geometria (MAB3)

Tavoitteet

Kurssin tavoitteena on, että opiskelija

  • harjaantuu tekemään havaintoja ja päätelmiä kuvioiden ja kappaleiden geometrisista ominaisuuksista
  • vahvistaa tasokuvioiden ja kolmiulotteisten kappaleiden kuvien piirtämisen taitojaan
  • osaa ratkaista käytännön ongelmia geometriaa hyväksi käyttäen
  • osaa käyttää teknisiä apuvälineitä kuvioiden ja kappaleiden tutkimisessa ja geometriaan liittyvien sovellusongelmien ratkaisussa.

Keskeiset sisällöt

  • kuvioiden yhdenmuotoisuus
  • suorakulmaisen kolmion trigonometria
  • Pythagoraan lause ja Pythagoraan lauseen käänteislause
  • kuvioiden ja kappaleiden pinta-alan ja tilavuuden määrittäminen
  • geometrian menetelmien käyttö koordinaatistossa



Matemaattisia malleja (MAB4)

Tavoitteet

Kurssin tavoitteena on, että opiskelija

  • näkee reaalimaailman ilmiöissä säännönmukaisuuksia ja riippuvuuksia ja kuvaa niitä matemaattisilla malleilla
  • tottuu arvioimaan mallien hyvyyttä ja käyttökelpoisuutta
  • tutustuu ennusteiden tekemiseen mallien pohjalta
  • osaa käyttää teknisiä apuvälineitä polynomi- ja eksponenttifunktion ominaisuuksien tutkimisessa sekä polynomi- ja eksponenttiyhtälöiden ratkaisussa sovellusongelmien yhteydessä.

Keskeiset sisällöt

  • lineaarisen ja eksponentiaalisen mallin soveltaminen
  • potenssiyhtälön ratkaiseminen
  • eksponenttiyhtälön ratkaiseminen logaritmin avulla
  • lukujonot matemaattisina malleina



Tilastot ja todennäköisyys (MAB5)

Tavoitteet

Kurssin tavoitteena on, että opiskelija

  • harjaantuu käsittelemään ja tulkitsemaan tilastollisia aineistoja
  • arvioi erilaisia regressiomalleja mm. taulukkolaskentaohjelman avulla ja tekee ennusteita mallien avulla
  • perehtyy todennäköisyyslaskennan perusteisiin
  • osaa käyttää teknisiä apuvälineitä digitaalisessa muodossa olevan datan hakemisessa, käsittelyssä ja tutkimisessa sekä diskreettien jakaumien tunnuslukujen määrittämisessä ja todennäköisyyslaskennassa.

Keskeiset sisällöt

  • diskreettien tilastollisten jakaumien tunnuslukujen määrittäminen
  • regression ja korrelaation käsitteet
  • havainto ja poikkeava havainto
  • ennusteiden tekeminen
  • kombinatoriikkaa
  • todennäköisyyden käsite
  • todennäköisyyden laskulakien ja niitä havainnollistavien mallien käyttöä



Talousmatematiikka (MAB6)

Tavoitteet

Kurssin tavoitteena on, että opiskelija

  • syventää prosenttilaskennan taitojaan
  • ymmärtää talouselämässä käytettyjä käsitteitä
  • kehittää matemaattisia valmiuksiaan oman taloutensa suunnitteluun
  • vahvistaa laskennallista pohjaansa yrittäjyyden ja taloustiedon opiskeluun
  • soveltaa tilastollisia menetelmiä aineistojen käsittelyyn
  • osaa käyttää teknisiä apuvälineitä laskelmien tekemisessä ja yhtälöiden ratkaisemisessa sovellusongelmissa.

Keskeiset sisällöt

  • indeksi-, kustannus-, rahaliikenne-, laina-, verotus- ja muita laskelmia
  • taloudellisiin tilanteisiin soveltuvia matemaattisia malleja lukujonojen ja summien avulla



Valtakunnalliset syventävät kurssit



Matemaattinen analyysi (MAB7)

Tavoitteet

Kurssin tavoitteena on, että opiskelija

  • tutkii funktion muutosnopeutta graafisin ja numeerisin menetelmin
  • ymmärtää derivaatan käsitteen muutosnopeuden mittana
  • osaa tutkia polynomifunktion kulkua derivaatan avulla
  • osaa määrittää sovellusten yhteydessä polynomifunktion suurimman ja pienimmän arvon
  • osaa käyttää teknisiä apuvälineitä funktion kulun tutkimisessa ja funktion derivaatan sekä suljetun välin ääriarvojen määrittämisessä sovellustehtävissä.

Keskeiset sisällöt

  • graafisia ja numeerisia menetelmiä
  • polynomifunktion derivaatta
  • polynomifunktion merkin ja kulun tutkiminen
  • polynomifunktion suurimman ja pienimmän arvon määrittäminen suljetulla välillä



Tilastot ja todennäköisyys II (MAB8)

Tavoitteet

Kurssin tavoitteena on, että opiskelija

  • vahvistaa ja monipuolistaa tilastojen käsittelytaitojaan
  • osaa määrittää tilastollisia tunnuslukuja ja todennäköisyyksiä jatkuvien jakaumien avulla hyödyntäen teknisiä apuvälineitä
  • osaa käyttää teknisiä apuvälineitä digitaalisessa muodossa olevan datan hakemisessa, käsittelyssä ja tutkimisessa, todennäköisyysjakauman odotusarvon ja keskihajonnan määrittämisessä, todennäköisyyksien laskemisessa annetun jakauman ja parametrien avulla sekä luottamusvälin laskemisessa.

Keskeiset sisällöt

  • normaalijakauma ja jakauman normittamisen käsitteet
  • toistokoe
  • binomijakauma
  • luottamusvälin käsite



Syventävät koulukohtaiset kurssit



Matematiikan kertauskurssi (MAB9)


Tavoitteet


Kurssin tavoitteena on, että
  • Opiskelija kertaa ja myös syventää ymmärrystään eri kurssien aihekokonaisuuksista
  • Opiskelija osaa paremmin hahmottaa eri matematiikan osa-alueiden suhteita toisiinsa jotta aiemmin opitut asiat ja -ratkaisustrategiat olisi vain irrallisia kokonaisuuksia
  • Opiskelija osaa käyttää ja valita sopivia matemaattisia toiminta-malleja ja strategioita kulloisenkin tehtävän mukaisesti
  • Opiskelija harjaantuu suoriutumaan yo-kokeiden vaatimustason mukaisista tehtävistä.


Keskeiset sisällöt
  • Erilaisten yhtälöiden ratkaisemisen kertaus
  • Prosenttilaskenta
  • Lineaarinen – ja eksponentiaalinen malli
  • Geometrian kertaaminen
  • Funktion kuvaaja ja derivaatta, funktion ääriarvot.
  • Tilastomatematiikka ja todennäköisyys
  • vanhojen yo-tehtävien ratkaiseminen ja harjoitteleminen
  • sanallisten tehtävien harjoitteleminen