1.2 Polymien jaollisuus

121
a)
\frac{2x^2+8x+8}{x+2}=\frac{2\left(x^2+4x+4\right)}{x+2}
x^2+4x+4
a=1{,}\ b=4{,}\ c=4
u\cdot v=4\ ja\ u+v=4
u=2\ ja\ v=2
x^2+4x+4=\left(x^2+2x\right)+\left(2x+4\right)=x\left(x+2\right)+2\left(x+2\right)=\left(x+2\right)\left(x+2\right)=\left(x+2\right)^2
\frac{2x^2+8x+8}{x+2}=\frac{2\left(x^2+4x+4\right)}{x+2}=\frac{2\left(x+2\right)^2}{\left(x+2\right)}=2\left(x+2\right)=2x+4
 
b)
\frac{x^2+2x+2}{x+1}=\frac{x^2+2x+1+1}{x+1}=\frac{\left(x+1\right)^2+1}{x+1}=x+1+\frac{1}{x+1}

122
a)
P\left(1\right)=3\cdot1^2-1-2=3-1-2=0
On
3x^2-x-2
ax^2+bx+c=\left(ax^2+ux\right)+\left(vx+c\right)
a=3{,}\ b=-1{,}\ c=-2
u\cdot v=a\cdot c\ ja\ u+v=b
u\cdot v=-6\ ja\ u+v=-1
u=2\ ja\ v=-3
\left(3x^2+2x\right)+\left(-3x-2\right)
x\left(3x+2\right)-\left(3x+2\right)=\left(x-1\right)\left(3x+2\right)

b)
P\left(2\right)=3\cdot2^2-2-2=12-4=8
ei ole 

c)
P\left(1\right)=3\cdot1^2-1-2=0
on
3x^2-x-2
ax^2+bx+c=\left(ax^2+ux\right)+\left(vx+c\right)
a=3{,}\ b=-1{,}\ c=-2
u\cdot v=a\cdot c\ ja\ u+v=b
u\cdot v=-6\ ja\ u+v=-1
u=2\ ja\ v=-3
\left(3x^2+2x\right)+\left(-3x-2\right)
x\left(3x+2\right)-\left(3x+2\right)=\left(x-1\right)\left(3x+2\right) 
\frac{\left(x-1\right)\left(3x+2\right)}{2x-2}=\frac{\left(x-1\right)\left(3x+2\right)}{2\left(x-1\right)}=\frac{3x+2}{2}
P\left(x\right)=\left(2x-2\right)\left(\frac{3}{2}x+1\right)

123
a)
3x^2-6x+3
a=3{,}\ b=-6{,}\ c=3
u\cdot v=9\ ja\ u+v=-6
u=-3\ ja\ v=-3
\left(3x^2-3x\right)+\left(-3x+3\right)=3x\left(x-1\right)-3\left(x-1\right)=\left(3x-3\right)\left(x-1\right)
b)
2x^2-7x-4
a=2{,}\ b=-7{,}\ c=-4
u\cdot v=-8\ ja\ u+v=-7
u=-8\ ja\ v=1
\left(2x^2-8x\right)+\left(x-4\right)=2x\left(x-4\right)+1\left(x-4\right)=\left(2x+1\right)\left(x-4\right)
c)
x^3-2x^2+3x=x\left(x^2-2x+3\right)

124
a)
\frac{4x^2-4}{x+1}=\frac{4\left(x-1\right)\left(x+1\right)}{\left(x+1\right)}=4\left(x-1\right)=4x-4
4x^2-4=\left(4x-4\right)\left(x+1\right)
b)
\frac{x^3+x^2-12x}{x+4}=\frac{x\left(x^2+x-12\right)}{x+4}
x=\frac{-1\pm\sqrt[]{1^2-4\cdot1\cdot\left(-12\right)}}{2\cdot1}=\frac{-1\pm\sqrt[]{49}}{2}=\frac{-1\pm7}{2}
x=\frac{-1+7}{2}=3
tai
x=\frac{-1-7}{2}=\frac{-8}{2}=-4
\frac{x\left(x^2+x-12\right)}{x+4}=\frac{x\left(x-3\right)\left(x+4\right)}{\left(x+4\right)}=x\left(x-3\right)
x^3+x^2-12x=x\left(x-3\right)\left(x+4\right)

125
a)
P\left(\frac{1}{2}\right)=6\cdot\left(\frac{1}{2}\right)^2-\frac{1}{2}-2=1\frac{1}{2}-\frac{1}{2}-2=-1
ei ole jaollinen
 
b)
P\left(\frac{1}{2}\right)=4\cdot\left(\frac{1}{2}\right)^4-\left(\frac{1}{2}\right)^3-\frac{1}{2}\cdot\left(\frac{1}{2}\right)^2=\frac{4}{16}-\frac{1}{8}-\frac{1}{8}=\frac{4}{16}-\frac{1}{4}=\frac{4}{16}-\frac{4}{16}=0
\frac{4x^4-x^3-\frac{1}{2}x^2}{2x-1}=\frac{4x^4-x^3-\frac{x^2}{2}}{2x-1}=\frac{\frac{4x^42}{2}-\frac{x^32}{2}-\frac{x^2}{2}}{2x-1}=\frac{\frac{8x^4-2x^3-x^2}{2}}{2x-1}=\frac{8x^4-2x^3-x^2}{2\left(2x-1\right)}=\frac{x^2\left(8x^2-2x-1\right)}{2\left(2x-1\right)}
f\left(x\right)=8x^2-2x-1
a=8{,}\ b=-2{,}\ c=-1
u\cdot v=-8\ ja\ u+v=-2
u=2\ ja\ v=-4
\left(8x^2+2x\right)+\left(-4x-1\right)=2x\left(4x+1\right)-1\left(4x+1\right)=\left(2x-1\right)\left(4x+1\right)
\frac{x^2\left(8x^2-2x-1\right)}{2\left(2x-1\right)}=\frac{x^2\left(2x-1\right)\left(4x+1\right)}{2\left(2x-1\right)}=\frac{x^2\left(4x+1\right)}{2}
P\left(x\right)=\left(\frac{x^2\left(4x+1\right)}{2}\right)\cdot\left(2x-1\right)

126
A I 
B II, IV
C II, IV
D III
 
127
a)
\left(x^2+1+\frac{3}{x+3}\right)\cdot\left(x+3\right)
x^2+1+\frac{3}{x+3}=\frac{x^2\left(x+3\right)}{x+3}+\frac{x+3}{x+3}+\frac{3}{x+3}=\frac{x^3+3x^2+x+6}{x+3}
P\left(x\right)=\frac{x^3+3x^2+x+6}{x+3}\cdot\left(x+3\right)=x^3+3x^2+x+6
b)
\frac{2x^3-5x^2+3x}{2x-3}=\frac{x\left(2x^2-5x+3\right)}{2x-3}
2x^2-5x+3
a=2{,}\ b=-5{,}\ c=3
u\cdot v=6\ ja\ u+v=-5
u=-2\ ja\ v=-3
\left(2x^2-2x\right)+\left(-3x+3\right)=2x\left(x-1\right)+-3\left(x-1\right)=\left(2x-3\right)\left(x-1\right)
P\left(x\right)=\frac{x\left(2x-3\right)\left(x-1\right)}{2x-3}=x\left(x-1\right)=x^2-x


128
a)
x^2-12x+a_1=a_2^2+2a_2b+b^2
a_2=x{,}\ b=-6{,}\ b^2=a_1=36
b)
9x^2+ax+4=\left(3x\right)^2+\left(2\cdot b\cdot3x\right)+4\ \ \ \ \ \left|\right|4=2^2{,}\ joten\ b=\pm2
\left(3x\right)^2+\left(2\cdot2\cdot3x\right)+2^2=9x^2+12x+4
a=\pm12
c)
ax^2-8x+4=ax^2+\left(2\cdot-2\cdot ax\right)+\left(-2\right)^2=\left(2x-2\right)^2
\left(2x-2\right)^2=4x^2+2\cdot\left(-2\right)\cdot2x+\left(-2\right)^2=4x^2-8x+4
a=4

129
\frac{x^3-4x}{x^2+2x}=\frac{x\left(x^2-4\right)}{x\left(x+2\right)}=\frac{x\left(x+2\right)\left(x-2\right)}{x\left(x+2\right)}=x-2

130
a)
x^2\left(x-1\right)-4\left(x-1\right)=\left(x^2-4\right)\left(x-1\right)=\left(x-2\right)\left(x+2\right)\left(x-1\right)
b)
x^3+8x^2+x+8=x^2\left(x+8\right)+\left(x+8\right)=\left(x^2+1\right)\left(x+8\right)
c)
x^3-3x^2+2x-6=x^2\left(x-3\right)+2\left(x-3\right)=\left(x^2+2\right)\left(x-3\right)

131
a)
2x^2+2x-24=0
x=\frac{-2\pm\sqrt[]{2^2-4\cdot2\cdot\left(-24\right)}}{2\cdot2}=\frac{-2\pm14}{4}
x=\frac{-2+14}{4}=3
tai
x=\frac{-2-14}{4}=-4
b)
P\left(2\right)=2^2-2k-k^2-1=4-2k-k^2-1=-k^2-2k+3
-k^2-2k+3=0
k=\frac{2\pm\sqrt[]{\left(-2\right)^2-4\cdot\left(-1\right)\cdot3}}{2\cdot\left(-1\right)}=\frac{2\pm4}{-2}
k=\frac{2+4}{-2}=-3
tai
k=\frac{2-4}{-2}=1

132
2x^2+ax+2a
2x^2+a\left(x+2\right)
a=0
2x^2+0\cdot\left(x+2\right)=2x^2=2x\cdot x
a=16
2x^2+16\left(x+2\right)=2x^2+16x+32=2\left(x^2+8x+16\right)=2\left(x+4\right)^2

133
a)
\frac{3x^2+5x-2}{2x+4}=\frac{x\left(3x+5\right)-2}{2\left(x+2\right)}
\lim_{x\rightarrow-2}\left(\frac{x\left(3x+5\right)-2}{2\left(x+2\right)}\right)=\frac{-2\left(3\cdot\left(-2\right)+5\right)-2}{2\left(-2+2\right)}=\frac{-2\left(-6+5\right)-2}{2\cdot0}=Nollalla\ jako
Käytetään Hopitalin sääntöä
\lim_{x\rightarrow-2}=\frac{f'\left(x\right)}{g'\left(x\right)}=\frac{6x+5}{2}=\frac{6\cdot\left(-2\right)+5}{2}=-\frac{7}{2}
b)
\frac{2x^3-2x^2-3x+3}{x-1}=\frac{x^2\left(2x-2\right)-3\left(x-1\right)}{x-1}=\frac{x^2\left(2\left(x-1\right)\right)-3\left(x-1\right)}{x-1}=\frac{2x^2\left(x-1\right)-3\left(x-1\right)}{x-1}=\frac{\left(2x^2-3\right)\left(x-1\right)}{\left(x-1\right)}=2x^3-3
\lim_{x\rightarrow1}=2x^3-3=2\cdot1^3-3=-1

134
\frac{2x^2+5x-3}{3x+a}

2x^2+5x-3
a=2{,}\ b=5{,}\ c=-3
u\cdot v=-6\ ja\ u+v=5
1{,}2{,}3{,}6
u=-1\ ja\ v=6
\left(2x^2-x\right)+\left(6x-3\right)=x\left(2x-1\right)+3\left(2x-1\right)=\left(x+3\right)\left(2x-1\right)
\frac{\left(x+3\right)\left(2x-1\right)}{3x+a}
\frac{\left(x+3\right)}{3x+a}=\frac{x+3}{3\left(x+\frac{a}{3}\right)}
\frac{a}{3}=3
a=9
tai
\frac{2x-1}{3x+a}=\frac{2\left(x-\frac{1}{2}\right)}{3\left(x+\frac{a}{3}\right)}
x-\frac{1}{2}=x+\frac{a}{3}
x-\frac{1}{2}=\frac{3}{2}\left(x+\frac{a}{3}\right)
x-\frac{1}{2}=\frac{3}{2}x+\frac{3a}{6}\ \ \ \ \ \left|\right|:\ \frac{3}{2}x=\frac{3x}{2}{,}\frac{3a}{6}=\frac{a}{2}
x-\frac{1}{2}=\frac{3x}{2}+\frac{a}{2}
x-\frac{1}{2}=\frac{3x+a}{2}
x=\frac{3x+a+1}{2}
\frac{3x+a+1}{2}-x=0
\frac{3x+a+1-2x}{2}=0
\frac{x+a+1}{2}=0
x+a+1=0
x+a=-1

135
2x^5-x^4-8x^3+4x^2=x^4\left(2x-1\right)-4x^2\left(2x-1\right)=\left(x^4-4x^2\right)\left(2x-1\right)=x^2\left(x^2-4\right)\left(2x-1\right)=x\cdot x\left(x-2\right)\left(x+2\right)\left(2x-1\right)