3.5 Solun energiantuotannon perusteet

Kaikki solut kuluttavat ja tarvitsevat jatkuvasti energiaa. Energiaa tarvitaan muun muassa biomolekyylien valmistamiseen, aineenvaihduntaan, aineiden kuljetukseen, kasvuun, lisääntymiseen ja viestintään. Solut voivat vapauttaa energiaa käyttöönsä orgaanisista yhdisteistä soluhengityksessä tai käymisen avulla.

​Sekä omavaraiset (autotrofiset) että toisenvaraiset (heterotrofiset) eliöt käyttävät energiaa. Omavaraiset eliöt pystyvät tuottamaan ravintonsa eli tarvitsemansa orgaaniset yhdisteet foto- tai kemosynteesin avulla. Toisenvaraiset eliöt käyttävät ravintonaan omavaraisten eliöiden tuottamia orgaanisia yhdisteitä ja hyödyntävät niihin sidottua kemiallista energiaa.

Esimerkiksi sokeriruoko on omavarainen eliö, sillä se pystyy sitomaan auringon valoenergiaa biomolekyyleihin, kuten ruokosokeriin. Ihminen on toisenvarainen eliö, joka käyttää energianlähteenään biomolekyylejä, esimerkiksi sokeria. Toisenvaraiset eliöt käyttävät myös omavaraisten eliöiden valmistamia biomolekyylejä lähtöaineina omien biomolekyyliensä rakentamiseen.



Solut käyttävät energiaa biomolekyylein valmistamiseen, joita tarvitaan solun kasvuun ja lisääntymiseen. Myös liikkuminen ja lämmön tuottaminen vaativat energiaa. Myös esimerkiksi aineiden kuljettamiseen ja solujen väliseen viestintään kuluu energiaa.

Soluhengitys ja käyminen

Soluhengityksessä eliöt vapauttavat orgaanisiin yhdisteisiin sitoutunutta kemiallista energiaa käyttöönsä. Soluhengitys on monesta kemiallisesta reaktiosta koostuva reaktiosarja, jossa yhdestä glukoosimolekyylistä ja kuudesta happimolekyylistä syntyy kuusi hiilidioksidimolekyyliä ja kuusi vesimolekyyliä.


SOLUHENGITYKSEN KAAVA:

C6H12O6 + 6 O2 ➞ 6 CO2 + 6 H2O. Soluhengityksessä vapautuu energiaa solun käyttöön.


Soluhengitys vaatii happea. Lähes kaikki hapellisissa oloissa elävät eliöt hyödyntävät soluhengitystä. Esimerkiksi kasvit, eläimet, alkueliöt sekä monet bakteerit vapauttavat energiaa käyttöönsä orgaanisista yhdisteistä soluhengityksen avulla. Tumallisilla eliöillä soluhengitys tapahtuu solulimassa ja mitokondrioissa. 

Jos solulla ei ole käytettävissä riittävästi happea, se joutuu turvautumaan käymiseen. Tällainen tilanne voi syntyä esimerkiksi kovan urheilusuorituksen aikana, kun elimistö ei pysty toimittamaan riittävän nopeasti happea kudoksille. Myös monet hapettomissa oloissa elävät pieneliöt hyödyntävät käymistä. Käyminen on melko tehoton energian tuotantomuoto. 


Maitohappokäymistä tapahtuu ihmisen lihaksessa, jos hapesta syntyy äkillinen puute. Tätä tilannetta kutsutaan usein ”hapoille menemiseksi”. Soluihin kertyvä maitohappo (laktaatti) aiheuttaa lihasten väsymisen ja kipeytymisen. Etanolikäymisestä hyödynnetään esimerkiksi leivonnassa ja alkoholituotannossa. Käytettäessä hiivaa leivonnassa etanolikäymisessä syntyvä hiilidioksidi nostattaa taikinan. Myös muutamat eläimet, kuten ruutana, voivat hyödyntää alkoholikäymistä hapettomissa oloissa.


Pitkäkestoisessa urheilusuorituksessa lihassoluilla alkaa olla pula hapesta. Tällöin solut tuottavat energiaa maitohappokäymisen avulla.


Yhteyttäminen: foto- ja kemosynteesi


Fotosynteesissä eliöt käyttävät auringon valoenergiaa, jotta ne pystyvät sitomaan hiilidioksidia ja muodostamaan glukoosia (sokeri). Auringonvalon avulla voidaan muodostaa hiilidioksidista ja vedestä glukoosia, jota solut voivat käyttää muiden biomolekyylien valmistamiseen. Fotosynteesissä lopputuotteena vapautuu lisäksi happea. 

Lähes kaikki toisenvaraiset eliöt ovat riippuvaisia kasveista ja siten fotosynteesistä. Toisenvaraisten eliöiden ravintoon sitoutunut energia on peräisin kasveista ja siten välillisesti auringosta.


Fotosynteesin kokonaisreaktio:

6 CO2 + 6 H2O ➞ C6H12O6 + 6 O2 (lisäksi tarvitaan auringon valoenergiaa)



Eräät tumattomat eliöt (eli eräät arkeonit ja bakteerit) saavat biomolekyylien valmistamiseen tarvittavan energian epäorgaanisista aineista kemosynteesin avulla. Ne eivät tarvitse valoa yhteyttämiseen. Kemosynteesiä hyödyntäviä eliöitä elää muun muassa maa- ja kallioperässä, valtamerten pohjilla ja kuumissa lähteissä.

Yle: fotosynteesi