MAA8 Tilastot ja todennäköisyys (2op)

Yleiset tavoitteet
Opintojakson tavoitteena on, että opiskelija
  • osaa havainnollistaa diskreettiä tilastollista jakaumaa sekä määrittää ja tulkita jakauman tunnuslukuja
  • osaa havainnollistaa kahden muuttujan yhteisjakaumaa sekä määrittää korrelaatiokertoimen ja regressiokäyrän
  • perehtyy kombinatorisiin menetelmiin
  • perehtyy todennäköisyyden käsitteeseen ja laskusääntöihin
  • ymmärtää diskreetin todennäköisyysjakauman käsitteen ja oppii määrittämään jakauman odotusarvon ja tulkitsemaan sitä
  • osaa käyttää ohjelmistoja digitaalisessa muodossa olevan datan hakemisessa, käsittelyssä ja tutkimisessa sekä tilastollisen tiedon esittämisessä
  • osaa hyödyntää ohjelmistoja jakaumien havainnollistamisessa, tunnuslukujen määrittämisessä sekä todennäköisyyksien laskemisessa.

Keskeiset sisällöt
  • keskiluvut ja keskihajonta
  • korrelaatio ja lineaarinen regressio
  • klassinen ja tilastollinen todennäköisyys
  • permutaatiot ja kombinaatiot
  • todennäköisyyden laskusäännöt
  • binomijakauma
  • diskreetti todennäköisyysjakauma
  • diskreetin jakauman odotusarvo

Tarkennuksia sisältöihin 

  • Tilastot: Perusjoukko ja otos. Tarkastelu voidaan rajata diskreetteihin tilastollisiin muuttujiin. Frekvenssitaulukot ja tilastollinen todennäköisyys. Tilastolliset tunnusluvut: vaihteluväli, keskiluvut (moodi, mediaani, keskiarvo) ja keskihajonta (otoskeskihajonta). Tunnuslukujen laskentaperiaatteen ymmärtäminen. Tilastolliset kuvaajat kuten ympyrädiagrammi, pylväs- ja palkkikuvaaja sekä summafrekvenssi-kuvaaja (viivakaavio). 
  • Kahden muuttujan yhteisjakauma: Selittävä ja selitettävä muuttuja, hajontakuvio, lineaarisen riippuvuuden havainnoiminen hajontakuviosta. Regressiosuora ja korrelaatiokerroin. Regressiomallin avulla tehdyt ennusteet.
  • Todennäköisyys: Klassinen todennäköisyys ja alkeistapausten laskemismenetelmiä (tuloperiaate, permutaatiot ja kombinaatiot). Riippumattomien tapahtumien kertolaskusääntö ja yleinen kertolaskusääntö. Erillisten tapahtumien yhteenlaskusääntö ja yleinen yhteenlaskusääntö. Komplementtisääntö. Venn-diagrammin hyödyntäminen laskusääntöjen havainnollistamisessa. Toistokoe ja binomitodennäköisyys.
  • Diskreetti todennäköisyysjakauma: Satunnaismuuttuja ja pistetodennäköisyys. Jakauman odotusarvo ja sen tulkinta. Toistokoe, binomijakauma ja sen odotusarvo. 

Ohjelmistotaidot 

Opintojakson tavoitteena on, että opiskelija 

  • harjaantuu taulukkolaskentaohjelman sujuvaan käyttöön, mm. soluviittaukset, lajittelu/järjestäminen ja suodatus (eli oleellisen informaation erottaminen)  
  • harjaantuu tilastollisen aineiston sujuvaan käsittelyyn: oppii tiivistämään tietoa taulukoimalla ja määrittämällä tunnuslukuja sekä havainnollistamaan tilastoja erilaisilla kaavioilla  
  • oppii piirtämään hajontakuvion, sovittamaan regressiosuoran sekä määrittämään korrelaatiokertoimen  
  • oppii laskemaan permutaatioita ja kombinaatioita 
  • oppii piirtämään binomijakauman kuvaajan, määrittämään jakauman tunnusluvut sekä määrittämään todennäköisyyksiä ja ratkaisemaan käänteisen tilanteen 
  • tutustuu ajankohtaisen tilastotiedon etsimiseen ja lataamiseen eri verkkolähteistä sekä tiedon käsittelyyn, kuvaamiseen ja analysoimiseen.

Laaja-alainen osaaminen

Laaja-alaisen osaamisen osa-alueista opintojaksolla painottuu yhteiskunnallinen osaaminen. Tämä voi näkyä opintojaksolla esimerkiksi niin, että opetus tukee opiskelijan yritteliäisyyttä ja yrittäjämäistä toimintaa sekä opettaa työn loppuunsaattamisen merkityksen.

Ehdotuksia soveltuvista työskentelytavoista 

Opintojaksossa voidaan käyttää sekä arvioitavia että (laaja-alaista) oppimista edistäviä työskentelytapoja, esimerkkeinä tutkimustehtävä, mielipidekirjoitus, pelit, parityöskentely, yritysyhteistyö, uutisseuranta, animaatio, ryhmätyö ja opintopolku. 

Opintojakson arviointi

Opintojaksolla toteutetaan monipuolisesti sekä formatiivista että summatiivista arviointia, painottaen opintojakson keskeisiä tavoitteita ja sisältöjä. Formatiivinen arviointi on lähinnä opiskelijaa opinnoissa eteenpäin, tavoitteiden saavuttamista kohti auttavaa, ei dokumentoitavaa palautetta. Summatiivinen arviointi koostuu esimerkiksi opiskelijan tuotoksista ja/tai tavoitteiden mukaista osaamista mittaavista kokeista saaduista arvosanoista.

Arvioinnissa kiinnitetään huomiota laskutaitoon, menetelmien valintaan, matemaattisen ajattelun ja ongelmanratkaisun taitoihin, päätelmien perustelemiseen ja analysoimiseen sekä ohjelmistojen valintaan ja käyttöön.

Arviointiasteikko on numeroarviointi (4-10).