2.2

238
\int_{ }^{ }e^{2x}=\frac{1}{2}e^{2x}+C
H\left(0\right)=\frac{1}{2}e^{2\cdot0}+C
\frac{1}{2}e^{2\cdot0}+C=-1
C=-\frac{3}{2}

243
\int_{ }^{ }-6\sin3x\ dx=\int_{ }^{ }-2\cdot3\cdot\sin3x\ dx=-2\int_{ }^{ }3\cdot\sin3x\ dx=-2\cdot\left(-\cos3x\right)+C=2\cos3x+C
G\left(\frac{\pi}{2}{,}1\right)=2\cos\left(3\cdot\frac{\pi}{2}\right)+C
2\cos\left(3\cdot\frac{\pi}{2}\right)+C=1
2\cdot0+C=1
C=1
G\left(x\right)=2\cos3x+1
2\cos3x+1=2
2\cos3x=1
\cos3x=\frac{1}{2}
3x=\pm\frac{\pi}{3}+n\cdot2\pi\ \ \ \ \ \left|\right|:3
x=\pm\frac{\pi}{9}+n\cdot\frac{2\pi}{3}{,}\ n\in\mathbb{Z}

250
a)
Koska 2,5 tunti on 150 min, on jäljellä n. 6 eliötä/min
b) 
g'\left(x\right)=54{,}06\cdot e^{-0{,}01x}
g\left(x\right)=\int_{ }^{ }54{,}06\cdot e^{-0{,}01x}dx=-3624{,}53e^{-0{,}01x}+C
Koska tunti on 60 min
g\left(0\right)=-3624{,}53e^{-0{,}01\cdot60}+C=500
C=4124.53
g\left(60\right)=2135.3457606281...\approx2135  

257 
\int_{ }^{ }\tan xdx=\int_{ }^{ }\left(\frac{\sin x}{\cos x}\right)dx=\int_{ }^{ }\left(\sin x\cdot\left(\cos x\right)^{-1}\right)dx=-\int_{ }^{ }-\sin x\left(\cos x\right)^{-1}dx
s\left(x\right)=\cos x{,}\ s'\left(x\right)=-\sin x{,}\ U=\ln\left|x\right|
=-\ln\left|\cos x\right|+C
Koska \cos x>0{,}\ -\frac{\pi}{2}<x<\frac{\pi}{2}
=-\ln\left(\cos x\right)+C