2. concepts of data representation in digital computers

  • Data and instructions cannot be entered and processed directly into computers using human language. Any type of data be it numbers, letters, special symbols, sound or pictures must first be converted into machine-readable form i.e. binary form. Due to this reason, it is important to understand how a computer together with its peripheral devices handles data in its electronic circuits, on magnetic media and in optical devices.

Data representation in digital circuits

  • Electronic components, such as microprocessor, are made up of millions of electronic circuits. The availability of high voltage(on) in these circuits is interpreted as ‘1’ while a low voltage (off) is interpreted as ‘0’.This concept can be compared to switching on and off an electric circuit. When the switch is closed the high voltage in the circuit causes the bulb to light (‘1’ state).on the other hand when the switch is open, the bulb goes off (‘0’ state). This forms a basis for describing data representation in digital computers using the binary number system.

Data representation on magnetic media

  • The laser beam reflected from the land is interpreted, as 1.The laser entering the pot is not reflected. This is interpreted as 0.The reflected pattern of light from the rotating disk falls on a receiving photoelectric detector that transforms the patterns into digital form.The presence of a magnetic field in one direction on magnetic media is interpreted as 1; while the field in the opposite direction is interpreted as “0”.Magnetic technology is mostly used on storage devices that are coated with special magnetic materials such as iron oxide. Data is written on the media by arranging the magnetic dipoles of some iron oxide particles to face in the same direction and some others in the opposite direction

Data representation on optical media

In optical devices, the presence of light is interpreted as ‘1’ while its absence is interpreted as ‘0’.Optical devices use this technology to read or store data. Take example of a CD-ROM, if the shiny surface is placed under a powerful microscope, the surface is observed to have very tiny holes called pits. The areas that do not have pits are called land.

Peda.net käyttää vain välttämättömiä evästeitä istunnon ylläpitämiseen ja anonyymiin tekniseen tilastointiin. Peda.net ei koskaan käytä evästeitä markkinointiin tai kerää yksilöityjä tilastoja. Lisää tietoa evästeistä