Kurssien sisällöt OPS

Kurssit

Pakolliset kurssit

  1. Luvut ja lukujonot (MAY1)

Tavoitteet

Kurssin tavoitteena on, että opiskelija

  • pohtii matematiikan merkitystä yksilön ja yhteiskunnan näkökulmasta
  • kertaa ja täydentää lukualueet, kertaa peruslaskutoimitukset ja prosenttilaskennan periaatteet
  • vahvistaa ymmärrystään funktion käsitteestä
  • ymmärtää lukujonon käsitteen
  • osaa määrittää lukujonoja, kun annetaan alkuehdot ja tapa, jolla seuraavat termit muodostetaan
  • saa havainnollisen käsityksen lukujonon summan määrittämisestä
  • osaa ratkaista käytännön ongelmia aritmeettisen ja geometrisen jonon ja niistä muodostettujen summien avulla
  • osaa käyttää teknisiä apuvälineitä funktion kuvaajan ja lukujonojen tutkimisessa sekä lukujonoihin liittyvien sovellusongelmien ratkaisussa.

Keskeiset sisällöt

  • reaaliluvut, peruslaskutoimitukset ja prosenttilaskenta
  • funktio, kuvaajan piirto ja tulkinta
  • lukujono
  • rekursiivinen lukujono
  • aritmeettinen jono ja summa
  • logaritmi ja potenssi sekä niiden välinen yhteys
  • muotoa , x ∈ℕ olevien yhtälöiden ratkaiseminen
  • geometrinen jono ja summa
  1. Polynomifunktiot ja -yhtälöt (MAA2)

Tavoitteet

Kurssin tavoitteena on, että opiskelija

  • harjaantuu käsittelemään polynomifunktioita
  • osaa ratkaista toisen asteen polynomiyhtälöitä ja tutkia ratkaisujen lukumäärää
  • osaa ratkaista korkeamman asteen polynomiyhtälöitä, jotka voidaan ratkaista ilman polynomien jakolaskua
  • osaa ratkaista yksinkertaisia polynomiepäyhtälöitä
  • osaa käyttää teknisiä apuvälineitä polynomifunktion tutkimisessa ja polynomiyhtälöihin ja polynomiepäyhtälöihin sekä polynomifunktioihin liittyvien sovellusongelmien ratkaisussa.

 

Keskeiset sisällöt

  • polynomien tulo ja muotoaolevat binomikaavat
  • asteen yhtälö ja ratkaisukaava sekä juurten lukumäärän tutkiminen
  • asteen polynomin jakaminen tekijöihin
  • polynomifunktio
  • polynomiyhtälöitä
  • polynomiepäyhtälön ratkaiseminen
  1. Geometria (MAA3)

Tavotteet

Kurssin tavoitteena on, että opiskelija

  • harjaantuu hahmottamaan ja kuvaamaan tilaa sekä muotoa koskevaa tietoa sekä kaksi- että kolmiulotteisissa tilanteissa
  • harjaantuu muotoilemaan, perustelemaan ja käyttämään geometrista tietoa käsitteleviä lauseita
  • osaa ratkaista geometrisia ongelmia käyttäen hyväksi kuvioiden ja kappaleiden ominaisuuksia, yhdenmuotoisuutta, Pythagoraan lausetta sekä suora- ja vinokulmaisen kolmion trigonometriaa
  • osaa käyttää teknisiä apuvälineitä kuvioiden ja kappaleiden tutkimisessa ja geometriaan liittyvien sovellusongelmien ratkaisussa.

Keskeiset sisällöt

  • kuvioiden ja kappaleiden yhdenmuotoisuus
  • sini- ja kosinilause
  • ympyrän, sen osien ja siihen liittyvien suorien geometria
  • kuvioihin ja kappaleisiin liittyvien pituuksien, kulmien, pinta-alojen ja tilavuuksien laskeminen
  1. Vektorit (MAA4)

Tavoitteet

Kurssin tavoitteena on, että opiskelija

  • ymmärtää vektorikäsitteen ja perehtyy vektorilaskennan perusteisiin
  • osaa tutkia kuvioiden ominaisuuksia vektoreiden avulla
  • ymmärtää yhtälöryhmän ratkaisemisen periaatteen
  • osaa tutkia kaksi- ja kolmiulotteisen koordinaatiston pisteitä, etäisyyksiä ja kulmia vektoreiden avulla
  • osaa käyttää teknisiä apuvälineitä vektoreiden tutkimisessa sekä suoriin ja tasoihin liittyvien sovellusongelmien ratkaisussa.

Keskeiset sisällöt

  • vektoreiden perusominaisuudet
  • vektoreiden yhteen- ja vähennyslasku ja vektorin kertominen luvulla
  • koordinaatiston vektoreiden skalaaritulo
  • yhtälöryhmän ratkaiseminen
  • suorat ja tasot avaruudessa
  1. Analyyttinen geometria (MAA5)

Tavoitteet

Kurssin tavoitteena on, että opiskelija

  • ymmärtää, kuinka analyyttinen geometria luo yhteyksiä geometristen ja algebrallisten käsitteiden välille
  • ymmärtää pistejoukon yhtälön käsitteen ja oppii tutkimaan yhtälöiden avulla pisteitä, suoria, ympyröitä ja paraabeleja
  • syventää itseisarvokäsitteen ymmärtämystään ja oppii ratkaisemaan sellaisia yksinkertaisia itseisarvoyhtälöitä ja vastaavia epäyhtälöitä, jotka ovat tyyppiä
    | f(x) | = a tai | f(x) | = | g(x) |
  • osaa käyttää teknisiä apuvälineitä pistejoukon yhtälön tutkimisessa sekä yhtälöiden, yhtälöryhmien, itseisarvoyhtälöiden ja epäyhtälöiden ratkaisemisessa sovellusongelmissa.

Keskeiset sisällöt

  • pistejoukon yhtälö
  • suoran, ympyrän ja paraabelin yhtälöt
  • itseisarvoyhtälön ja epäyhtälön ratkaiseminen
  • pisteen etäisyys suorasta
  1. Derivaatta (MAA6)

Tavoitteet

Kurssin tavoitteena on, että opiskelija

  • osaa määrittää rationaalifunktion nollakohdat ja ratkaista yksinkertaisia rationaaliepäyhtälöitä
  • omaksuu havainnollisen käsityksen funktion raja-arvosta, jatkuvuudesta ja derivaatasta
  • osaa määrittää yksinkertaisten funktioiden derivaatat
  • osaa tutkia derivaatan avulla polynomifunktion kulkua ja määrittää sen ääriarvot
  • tietää, kuinka rationaalifunktion suurin ja pienin arvo määritetään
  • osaa käyttää teknisiä apuvälineitä raja-arvon, jatkuvuuden ja derivaatan tutkimisessa ja rationaaliyhtälöiden ja -epäyhtälöiden ratkaisemisessa sekä polynomi- ja rationaalifunktion derivaatan määrittämisessä sovellusongelmissa.

Keskeiset sisällöt

  • rationaaliyhtälö ja ‑epäyhtälö
  • funktion raja-arvo, jatkuvuus ja derivaatta
  • polynomifunktion, funktioiden tulon ja osamäärän derivoiminen
  • polynomifunktion kulun tutkiminen ja ääriarvojen määrittäminen
  1. Trigonometriset funktiot (MAA7)

Tavoitteet

Kurssin tavoitteena on, että opiskelija

  • tutkii trigonometrisia funktioita yksikköympyrän symmetrioiden avulla
  • osaa ratkaista sellaisia trigonometrisia yhtälöitä, jotka ovat tyyppiä 
    sin f(x) = a tai sin f(x) = sin g(x)
  • osaa trigonometristen funktioiden yhteydet ja 
  • osaa derivoida yhdistettyjä funktioita
  • osaa tutkia trigonometrisia funktioita derivaatan avulla
  • osaa hyödyntää trigonometrisia funktioita mallintaessaan jaksollisia ilmiöitä
  • osaa käyttää teknisiä apuvälineitä trigonometristen funktioiden tutkimisessa ja trigonometristen yhtälöiden ratkaisemisessa ja trigonometristen funktioiden derivaattojen määrittämisessä sovellusongelmissa.

Keskeiset sisällöt  

  • suunnattu kulma ja radiaani
  • trigonometriset funktiot symmetria- ja jaksollisuusominaisuuksineen
  • trigonometristen yhtälöiden ratkaiseminen
  • yhdistetyn funktion derivaatta
  • trigonometristen funktioiden derivaatat
  1. Juuri- ja logaritmifunktiot (MAA8)

Tavoitteet

Kurssin tavoitteena on, että opiskelija

  • kertaa potenssienlaskusäännöt mukaan lukien murtopotenssit
  • tuntee juuri-, eksponentti- ja logaritmifunktioiden ominaisuudet ja osaa ratkaista niihin liittyviä yhtälöitä
  • osaa tutkia juuri-, eksponentti- ja logaritmifunktioita derivaatan avulla
  • osaa hyödyntää eksponenttifunktiota mallintaessaan erilaisia kasvamisen ja vähenemisen ilmiöitä
  • osaa käyttää teknisiä apuvälineitä juuri-, eksponentti- ja logaritmifunktioiden tutkimisessa ja juuri-, eksponentti- ja logaritmiyhtälöiden ratkaisemisessa sekä juuri-, eksponentti- ja logaritmifunktion derivaattojen määrittämisessä sovellusongelmissa.

Keskeiset sisällöt

  • potenssien laskusäännöt
  • juurifunktiot ja -yhtälöt
  • eksponenttifunktiot ja -yhtälöt
  • logaritmifunktiot ja -yhtälöt
  • juuri-, eksponentti- ja logaritmifunktioiden derivaatat
  1. Integraalilaskenta (MAA9)

Tavoitteet

Kurssin tavoitteena on, että opiskelija

  • ymmärtää integraalifunktion käsitteen ja oppii määrittämään alkeisfunktioiden integraalifunktioita
  • ymmärtää määrätyn integraalin käsitteen ja sen yhteyden pinta-alaan
  • osaa määrittää pinta-aloja ja tilavuuksia määrätyn integraalin avulla
  • perehtyy integraalilaskennan sovelluksiin
  • osaa käyttää teknisiä apuvälineitä funktion ominaisuuksien tutkimisessa ja integraalifunktion määrittämisessä sekä määrätyn integraalin laskemisessa sovellusongelmissa.

Keskeiset sisällöt  

  • integraalifunktio
  • alkeisfunktioiden integraalifunktiot
  • määrätty integraali
  • pinta-alan ja tilavuuden laskeminen
  1. Todennäköisyys ja tilastot (MAA10)

Tavoitteet

Kurssin tavoitteena on, että opiskelija

  • osaa havainnollistaa diskreettejä ja jatkuvia tilastollisia jakaumia sekä määrittää ja tulkita jakaumien tunnuslukuja
  • perehtyy kombinatorisiin menetelmiin
  • perehtyy todennäköisyyden käsitteeseen ja todennäköisyyksien laskusääntöihin
  • ymmärtää diskreetin todennäköisyysjakauman käsitteen ja oppii määrittämään jakauman odotusarvon ja soveltamaan sitä
  • perehtyy jatkuvan todennäköisyysjakauman käsitteeseen ja oppii soveltamaan normaalijakaumaa
  • osaa käyttää teknisiä apuvälineitä digitaalisessa muodossa olevan datan hakemisessa, käsittelyssä ja tutkimisessa sekä jakaumien tunnuslukujen määrittämisessä ja todennäköisyyksien laskemisessa annetun jakauman ja parametrien avulla.

Keskeiset sisällöt

  • diskreetti ja jatkuva tilastollinen jakauma
  • jakauman tunnusluvut
  • klassinen ja tilastollinen todennäköisyys
  • kombinatoriikka
  • todennäköisyyksien laskusäännöt
  • diskreetti ja jatkuva todennäköisyysjakauma
  • diskreetin jakauman odotusarvo
  • normaalijakauma

Valtakunnalliset syventävät kurssit (OPS OPH)

  1. Lukuteoria ja todistaminen (MAA11)

Tavoitteet

Kurssin tavoitteena on, että opiskelija

  • perehtyy logiikan alkeisiin ja tutustuu todistusperiaatteisiin sekä harjoittelee todistamista
  • hallitsee lukuteorian peruskäsitteet ja perehtyy alkulukujen ominaisuuksiin
  • osaa tutkia kokonaislukujen jaollisuutta jakoyhtälön ja kokonaislukujen kongruenssin avulla
  • syventää ymmärrystään lukujonoista ja niiden summista
  • osaa käyttää teknisiä apuvälineitä lukujen ominaisuuksien tutkimisessa.

Keskeiset sisällöt

  • konnektiivit ja totuusarvot
  • geometrinen todistaminen
  • suora, käänteinen ja ristiriitatodistus
  • induktiotodistus
  • kokonaislukujen jaollisuus ja jakoyhtälö
  • Eukleideen algoritmi
  • alkuluvut ja Eratostheneen seula
  • aritmetiikan peruslause
  • kokonaislukujen kongruenssi
  1. Algoritmit matematiikassa (MAA12)

Tavoitteet

Kurssin tavoitteena on, että opiskelija

  • syventää algoritmista ajatteluaan
  • osaa tutkia ja selittää, kuinka algoritmit toimivat
  • ymmärtää iteroinnin käsitteen ja oppii ratkaisemaan epälineaarisia yhtälöitä numeerisesti
  • osaa tutkia polynomien jaollisuutta ja osaa määrittää polynomin tekijät
  • osaa määrittää numeerisesti muutosnopeutta ja pinta-alaa
  • osaa käyttää teknisiä apuvälineitä algoritmien tutkimisessa ja laskutoimituksissa.

Keskeiset sisällöt

  • iterointi ja Newton-Raphsonin menetelmä
  • polynomien jakoalgoritmi
  • polynomien jakoyhtälö
  • Newton-Cotes-kaavat: suorakaidesääntö, puolisuunnikassääntö ja Simpsonin sääntö
  1. Differentiaali- ja integraalilaskennan jatkokurssi (MAA13)

Tavoitteet

Kurssin tavoitteena on, että opiskelija

  • syventää differentiaali- ja integraalilaskennan teoreettisten perusteiden tuntemustaan
  • osaa tutkia aidosti monotonisten funktioiden käänteisfunktioita
  • täydentää integraalilaskennan taitojaan ja soveltaa niitä muun muassa jatkuvien todennäköisyysjakaumien tutkimiseen
  • osaa tutkia lukujonon raja-arvoa, sarjoja ja niiden summia
  • osaa käyttää teknisiä apuvälineitä funktion ominaisuuksien tutkimisessa ja derivaatan laskemisessa annetun muuttujan suhteen sekä epäoleellisten integraalien, lukujonon raja-arvon ja sarjan summan laskemisessa sovellustehtävissä.

 

Keskeiset sisällöt  

  • funktion jatkuvuuden ja derivoituvuuden tutkiminen
  • jatkuvien ja derivoituvien funktioiden yleisiä ominaisuuksia
  • käänteisfunktio
  • kahden muuttujan funktio ja osittaisderivaatta
  • funktioiden ja lukujonojen raja-arvot äärettömyydessä
  • epäoleelliset integraalit
  • lukujonon raja-arvo, sarjat ja niiden summa

Soveltavat kurssit (koulukohtaisia)

Kertauskurssi, soveltava kurssi (maa14):

Keskeiset sisällöt
Yhtälöt, epäyhtälöt, funktiot; geometria, vektorit, trigonometria, analyyttinen geometria;
analyysin sovelluksia; todennäköisyyslaskentaa ja tilastotiedettä.

Talousmatematiikka (maa15)
Keskeiset sisällöt
prosentti, opintotuki, verotus, korko, laina, valuutta

Matematiikan ylioppilastehtävät, soveltava kurssi (maa16):

Keskeiset sisällöt

Kurssilla kerrataan aikaisempien kurssien sisältöjä ja lasketaan mm. ylioppilaskoetehtäviä