Pakolliset opinnot
Lausekkeet ja yhtälöt (MAB2)
Yleiset tavoitteet
Moduulin tavoitteena on, että opiskelija
- harjaantuu käyttämään matematiikkaa ongelmien ratkaisemisessa ja oppii luottamaan omiin matemaattisiin kykyihinsä
- oppii muodostaan lausekkeita ja yhtälöitä annettuihin ongelmiin sekä ratkaisemaan yhtälöitä ja tulkitsemaan saatua ratkaisua
- osaa soveltaa lukujonoja ja niistä muodostettuja summia matemaattisten ongelmien ratkaisussa
- osaa käyttää ohjelmistoja polynomifunktion tutkimisessa, polynomiyhtälöihin ja polynomifunktioihin liittyvien sovellusten yhteydessä.
Keskeiset sisällöt
Keskeiset sisällöt
- ongelmien muotoileminen yhtälöiksi
- yhtälöiden ratkaiseminen
- ratkaisujen tulkinta ja arvioiminen
- toisen asteen polynomifunktio ja toisen asteen yhtälön ratkaiseminen
- aritmeettinen lukujono ja summa
- geometrinen lukujono ja summa
Geometria (MAB3)
Yleiset tavoitteet
Moduulin tavoitteena on, että opiskelija
- harjaantuu tekemään havaintoja ja päätelmiä kuvioiden ja kappaleiden geometrisista ominaisuuksista
- vahvistaa tasokuvioiden ja kolmiulotteisten kappaleiden kuvien piirtämisen taitojaan
- osaa ratkaista käytännön ongelmia geometriaa hyväksi käyttäen
- osaa käyttää ohjelmistoja kuvioiden ja kappaleiden tutkimisessa sekä geometriaan liittyvien sovellusten yhteydessä.
Keskeiset sisällöt
Keskeiset sisällöt
- kuvioiden yhdenmuotoisuus
- suorakulmaisen kolmion trigonometria
- Pythagoraan lause ja Pythagoraan lauseen käänteislause
- kuvioiden ja kappaleiden pinta-alan ja tilavuuden määrittäminen
- geometrian menetelmien käyttö tasokoordinaatistossa
Matemaattisia malleja (MAB4)
Yleiset tavoitteet
Moduulin tavoitteena on, että opiskelija
- näkee reaalimaailman ilmiöissä säännönmukaisuuksia ja riippuvuuksia ja kuvaa niitä matemaattisilla malleilla
- arvioi lineaarisen ja eksponentiaalisen kasvun malleja muun muassa taulukkolaskentaohjelman avulla ja tekee ennusteita mallien avulla
- tottuu arvioimaan mallien hyvyyttä ja käyttökelpoisuutta
- osaa käyttää ohjelmistoja mallintamisessa, polynomi- ja eksponenttifunktion ominaisuuksien tutkimisessa sekä polynomi- ja eksponenttiyhtälöiden ratkaisussa sovellusten yhteydessä.
Keskeiset sisällöt
Keskeiset sisällöt
- lineaarisen ja eksponentiaalisen mallin soveltaminen
- eksponenttiyhtälön ratkaiseminen
- ennusteet ja mallin hyvyys
Tilastot ja todennäköisyys (MAB5)
Yleiset tavoitteet
Moduulin tavoitteena on, että opiskelija
- harjaantuu käsittelemään, havainnollistamaan ja tulkitsemaan tilastollisia aineistoja
- perehtyy todennäköisyyslaskennan perusteisiin ja sitä havainnollistaviin malleihin
- osaa käyttää ohjelmistoja digitaalisessa muodossa olevan datan hakemisessa, käsittelyssä ja tutkimisessa sekä havaintoaineiston tunnuslukujen määrittämisessä ja todennäköisyyslaskennassa.
Keskeiset sisällöt
Keskeiset sisällöt
- tilastoaineiston havainnollistaminen ja tunnuslukujen määrittäminen
- regression ja korrelaation käsitteet
- havainto ja poikkeava havainto
- ennusteiden tekeminen
- todennäköisyyden käsite
- yhteen- ja kertolaskusääntö
- kombinaatiot ja tuloperiaate
- todennäköisyyslaskennan malleja
Talousmatematiikan alkeet (MAB6)
Yleiset tavoitteet
Moduulin tavoitteena on, että opiskelija
- hallitsee talousmatematiikan peruskäsitteet ja -taidot
- syventää prosenttilaskennan taitojaan
- oppii kuvaamaan talouselämän asioiden kehittymistä
- osaa käyttää tietolähteitä ja ohjelmistoja laskelmien tekemisessä sovellusten yhteydessä.
Keskeiset sisällöt
Keskeiset sisällöt
- suhteellinen osuus, vertailu, muutoksen laskeminen
- indeksi
- korkokäsite, yksinkertainen korko
- verotus
- valuutat
Talousmatematiikka (MAB7)
Yleiset tavoitteet
Moduulin tavoitteena on, että opiskelija
- oppii hyödyntämään matemaattisia valmiuksiaan resurssien riittävyyteen, talouden suunnitteluun, yrittäjyyteen ja kannattavuuden laskentaan
- soveltaa lukujonojen kaavoja talouteen liittyvissä matemaattisissa ongelmissa
- oppii sovittamaan taloudellisiin tilanteisiin matemaattisia malleja ja ymmärtää niiden rajoitukset
- osaa hyödyntää ohjelmistoja laskelmien tekemisessä ja sovellusten yhteydessä.
Keskeiset sisällöt
Keskeiset sisällöt
- aritmeettinen ja geometrinen lukujono ja niiden summat
- korkolaskut: koron korko, nykyarvo ja diskonttaus
- talletukset ja lainat
- taloudellisiin tilanteisiin soveltuvia matemaattisia malleja, joissa hyödynnetään lukujonoja ja summia