
Funktion raja-arvo

• Oletetaan, että funktio 𝑓 on määritelty kohdan 𝑎 läheisyydessä 

molemmin puolin. (Huom! Ei ole väliä onko 𝑓(𝑎) määritelty.)

• Funktiolla 𝑓 on raja-arvo kohdassa 𝑎, jos vasemman- ja oikean-
puoleiset raja-arvot ovat molemmat olemassa ja yhtä suuria:
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Toispuoliset raja-arvot 
ovat eri suuret, joten 
funktiolla 𝑓 ei ole raja-
arvoa kohdassa 𝑎.
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𝑓 𝑥 = 𝑏 lim
𝑥→𝑎+

𝑓 𝑥=

𝑏

𝑐
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Epäoleellinen raja-arvo

• Jos funktion arvo 𝑓(𝑥) kasvaa rajatta, kun 𝑥 ⟶ 𝑎 (molemmilta 
puolilta), niin funktiolla on epäoleellinen raja-arvo ääretön

• Vastaavasti, jos funktion arvo 𝑓(𝑥) vähenee rajatta, kun 𝑥 ⟶ 𝑎, 
niin epäoleellinen raja-arvo on miinus ääretön

lim
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• Jatkuvuus määritellään täsmällisesti raja-arvon avulla:

• Funktio 𝑓 on jatkuva kohdassa 𝑥 = 𝑎, jos 

• Funktio on jatkuva, jos se on jatkuva kaikissa määrittelyjoukkonsa 
pisteissä. 

• Polynomi-, rationaali-, juuri-, potenssi-, eksponentti-, logaritmi ja 
trigonometriset funktiot sekä näiden yhdistetyt funktiot ovat jatkuvia.

• Paloittain määritellyille funktioille jatkuvuus pitää tarkistaa toispuolisia 
raja-arvoja käyttäen kohdassa, jossa funktion lauseke vaihtuu.

Jatkuvuus
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