
Yleisen potenssifunktion integrointi

• Yleiset potenssifunktiot 𝑥𝑟 , missä 𝑟 ∈ ℝ voidaan integroida 
vastaavaan tapaan kuin potenssifunktiot 𝑥𝑛, missä 𝑛 ∈ ℤ+.

• Ainoa poikkeus on potenssifunktio 𝑥−1.

• Kun eksponentti 𝑟 ≠ −1:

• Kun eksponentti 𝑟 = −1:

• Kaavat todistetaan derivoimalla (oppikirja s. 27)
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Eksponentti yhtä suuremmaksi ja uuden 
eksponentin käänteisluku kertoimeksi.
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t. 154, s. 31

Kerrotaan sulut auki ja muutetaan lausekkeet potenssimuotoon:
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t. 157, s. 31

Muodostetaan ensin funktion 𝑓 𝑥 = 𝑥 − 4, 𝑥 > 0, kaikki integraalifunktiot 𝐹.
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Se integraalifunktio, joka kulkee pisteen (9, 18) kautta, toteuttaa ehdon 𝐹 9 = 18.
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Kysytty integraalifunktio on siis 𝐹 𝑥 =
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𝑥 𝑥 − 4𝑥 + 36, missä 𝑥 > 0.



Integraalifunktion 𝐹 kulkua voidaan tutkia sen derivaatan eli alkuperäisen funktion 𝑓 avulla.

Derivaattafunktion 𝑓 𝑥 = 𝑥 − 4 arvot ovat positiivisia, kun

𝑥 − 4 > 0 ⟺  𝑥 > 4 ⟺  𝑥 > 16.

(Derivaattaa voi tutkia myös kulkukaaviolla ja testipisteillä.)

Derivaatta on siis positiivinen, kun 𝑥 > 16, joten kaikki integraalifunktiot ovat kasvavia välillä 16, ∞ .
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