Yleisen potenssifunktion integrointi

Yleiset potenssifunktiot x”, missa r € R voidaan integroida
vastaavaan tapaan kuin potenssifunktiot x™, missan € Z,..

Ainoa poikkeus on potenssifunktio x 1.
Kun eksponentti r # —1.:
r . r+1 Eksponentti yhta suuremmaksi ja uuden
fx dx = r4+1 X +C eksponentin kaanteisluku kertoimeksi.
Kun eksponentti r = —1.:

1 1
]x‘ldx = j;dx = In|x|+ C D Injx| = —

Kaavat todistetaan derivoimalla (oppikirja s. 27)



t. 154,s. 31

Kerrotaan sulut auki ja muutetaan lausekkeet potenssimuotoon:
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b) J(x--) dx :j<x2—2+—2>dx (a — b)* = a* — 2ab + b*
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t. 157,s. 31

Muodostetaan ensin funktion f(x) = \/x — 4, x > 0, kaikki integraalifunktiot F.

F(x) = j(\/f—ll)dx = j(x%—él)dx
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:§x2—4x+C:§x\/§—4x+C

Se integraalifunktio, joka kulkee pisteen (9, 18) kautta, toteuttaa ehdon F(9) = 18.

2
F(9)=§-9-\/§—4-9+C=18

6-3—36+C =183
C =36

Kysytty integraalifunktio on siis F(x) = gxx/f — 4x + 36, missa x > 0.



Integraalifunktion F kulkua voidaan tutkia sen derivaatan eli alkuperaisen funktion f avulla.

Derivaattafunktion f(x) = +/x — 4 arvot ovat positiivisia, kun
Vxr—4>0 © Jx>4 & x> 16.

(Derivaattaa voi tutkia myos kulkukaaviolla ja testipisteilla.)

Derivaatta on siis positiivinen, kun x > 16, joten kaikki integraalifunktiot ovat kasvavia valilla |16, oof.
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