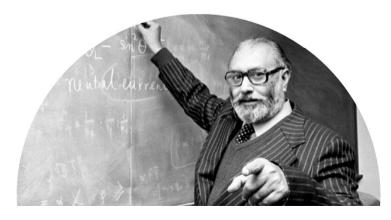
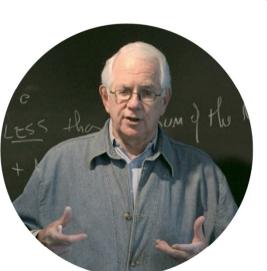

Standard Model

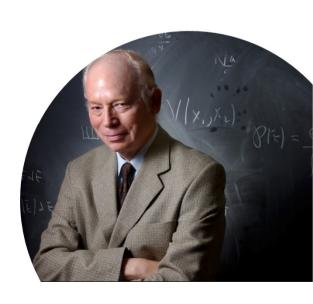
Iida and Laura

What it is?


- Theory of particle physics
- Standard model classifyes all known elementary particles and describes three out of four fundametal forces. (electromagnetic, strong and weak force)
- It's not the theory of everything because the gravity doesn't belong to it.



History


- Developed from 1970-1973
- First steps were taken in 1961 when Sheldon Glashow discovered a way to combine the electromagnetic and weak interactions.
- Glashow's electroweak interaction got it's modern form when Steven Weinberg and Abdus Salam untited the **Higgs mechanism** into it.
- Z-boson was discovered in CERN in 1973.
- Abraham Pais and Sam Treiman created the name "Standard Model" in 1975

Higgs Boson

- Why particles have their masses is explained by the Higgs field.
- The field is thought to slow down the particles that would otherwise move at the light speed.
- The more forcefully the Higgs field influences the particle the larger one is the mass of the particle.
- This model forecasts the particle called Higgs boson.
- The newest

Fundamental particles

- Matter consists of fundamental particles called quarks and leptons.
- They don't have internal structure because they are the smallest part of the matter.
- The nucleus of the atom consists of quarks and electron is the lepton.
- Quark does never occure alone but they always form some kind of particle together -"inprisonment of quarks"
- Every particle has their anti-particle which has the same mass than the particle but the other qualitys are different like the charge. For example electron's anti-particle is the positron.

The families of the fundamental particles

- The fundamental particles are divided into three different families:
 - -Electron's family: Up and Down quarks, electron and electron's neutrino
 - -Myon's family: Charm and Strange quarks, myon and myon's neutrino
 - -Tau's family: Truth or Top quark, Beauty or Bottom quark, tau and tau's neutrino
- All visible matter consists of particles of the family of electron.

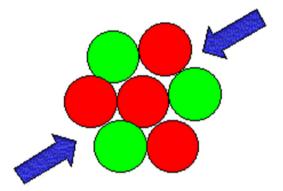
Fundamental interactions

- There are four fundamental interactions known to exist: the gravitational and electromagnetic interactions and the strong and weak interactions
- Govern how objects or particles interact and how certain particles decay
- The interactions that do not appear to be reducible to more basic interactions

The Strong Force

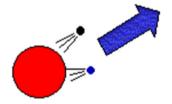
- A Force which can hold a nucleus together against the enormous forces of repulsion of the protons
- Not an inverse square force like the electromagnetic force
- In the standard model, the basic exchange particle is the gluon which meditates the forces between quarks
- The strongest of the four fundamental forces

The Electromagnetic Force

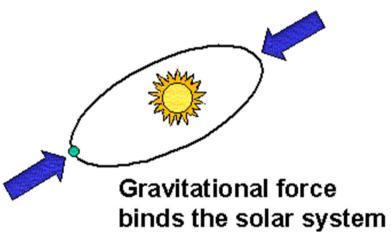

- Manifests itself through the forces between charges and the magnetic force
- Explains the chemical behavior of matter and the properties of light

The weak force

- Only effective at very short distances
- It acts on the subatomic level and plays a crucial role in powering stars and creating elements
- It is also responsible for much of the natural radiation present in the universe


Gauge boson

- It is a force-carrying elementary particle that carries any of the fundamental interactions of nature
- Elementary particles interact with each other by the exchange of gauge bosons
- All known gauge bosons are vector bosons
- The Standard Model of particle physics recognizes four kinds of gauge bosons: photons, W and Z bosons and gluons.



Strong force binds the nucleus

Weak force in radioactive decay

Sources

- https://en.wikipedia.org/wiki/Fundamental interaction, 4.9.2018
- http://hyperphysics.phy-astr.gsu.edu/hbase/Forces/funfor.html, 4.9.2018
- https://alchetron.com/Sheldon-Lee-Glashow, 4.9.2018
- https://en.wikipedia.org/wiki/Standard Model, 4.9.2018
- https://fi.wikipedia.org/wiki/Hiukkasfysiikan_standardimalli, 4.9.2018
- https://nevalalee.wordpress.com/tag/sam-treiman/, 4.9.2018
- https://www.worldsciencefestival.com/programs/explain-world-conversation-steven-weinberg/ 4.9.2018, 4.9.2018
- https://www.samaa.tv/news/2016/12/pm-nods-to-rename-physics-center-after-dr-abdus-salam/,4.9.2018, 4.9.2018
- https://www.john-adams.nl/abraham-pais/,4.9.2018, 4.9.2018
- https://www.britannica.com/science/fundamental-interaction, 14.9.2018
- https://www.google.fi/amp/s/amp.livascience.com/49254-weak-force.html , 14.9.2018
- https://tonkaforces.weebly.com/fundamental-forces.html , 14.9.2018
- https://www.quora.com/What-is-gauge-boson, 14.9.2018
- https://en.wikipedia.org/wiki/Gauge_boson, 14.9.2018
- Fysiikka 8: aine ja säteily, Tammi 2011
- http://yelom.myphonecompany.co/standard-model-of-particle-physics/, 15.9.2018
- https://proj-cngs.web.cern.ch/proj-cngs/GeneralDescriptionVe/GDVe_p05.htm, 15.9.2018
- https://www.youtube.com/watch?v=V0KjXsGRvoA: video
- https://youtu.be/V0KjXsGRvoA