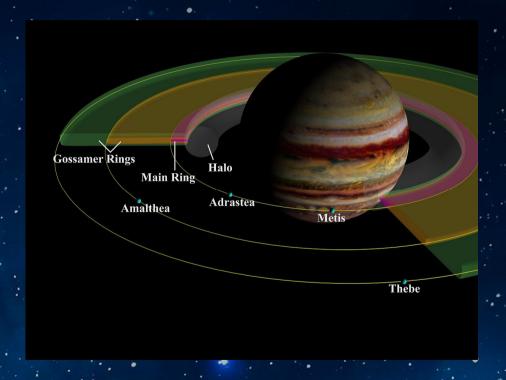
Rings of Planets

Nico and Elisa



Rings of Jupiter.

- Also known as the Jovian ring system
- Third ring system to be discovered in the Solar System.
- The Jovian ring system is faint and consists mainly of dust.

Rings of Jupiter

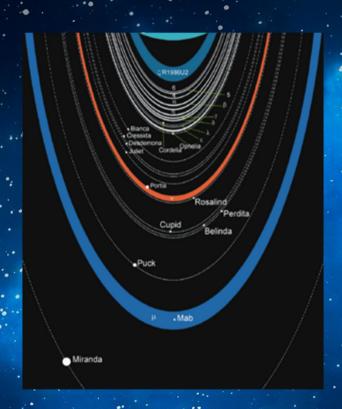
- The Jovian ring system consists of four main components:
 - Halo ring is a thick inner torus of particles
 - Exceptionally thin Main ring
 - And two wide, thick and faint gossamer rings, named for the moons whose material they are composed: Amalthea and Thebe.



- Saturn's rings are the most famous in the Solar System.
- In fact, you can see them with relatively cheap telescope on your own.
- Discovered by Galileo Galilei in 1610.
- Saturn's rings aren't visible from Earth without unaided vision
- The rings are 282,000 km wide but in the thinnest parts only about 10m thick.

Rings of Saturn

- Saturn's rings may be very old, dating to the formation of Saturn itself.
- Saturn's rings are made out of ice and tiny particles.
- The ring system can be divided into three main rings.
- The main rings are, from farthest from the planet to closest, A, B and C.
- D, F, G and E rings are fainter rings that have been detected as telescope technology has improved.


Rings of Uranus

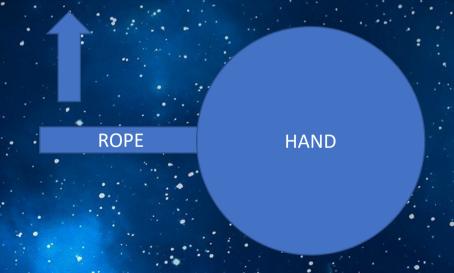
- Discovered in 1977.
- The rings are very faint, dark and thin.
- They are more complex than Neptune's and Jupiter's rings but much more simple than Saturn's.

Rings of Uranus

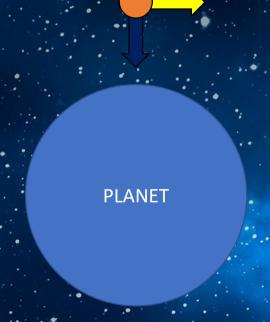
- Uranian ring system consists of multiple main rings and dust bands.
- Main rings, ε, δ, 6, 5, 4, α, β, η and γ are made of small particles and are responsible for most of the light reflected by the ring system.
- Dust bands don't reflect nearly any light and are fairly thin

Rings of Neptune

- Discovered definitively by Voyager 2 in 1989.
- The rings of Neptune consist primarily of five principal rings:
 - Galle
 - Le Verrier
 - Lassell
 - Arago
 - Adams
- Neptune's rings are very dark and probably made out of organic compounds that have been baked in cosmic radiation.



How do the rings form?


How are the rings being held together?

Hold a rope and spin it.

How are the rings being held together?

- Imagine that the end of the rope that you are holding is a particle orbiting a planet and your hand is the planet.
- The particle is affected mainly by two forces:
 - The gravity of the planet
 - The velocity of the particle

How are the rings being held together?

- When the altitude and velocity of the particle are correct, the particle falls towards the planet constantly.
- This is how everything stays in orbit.
- For example:
 - Earth around the Sun
 - ISS around the Earth
 - And rings around Saturn.

Sources

- https://en.wikipedia.org/wiki/Rings_of_Jupiter
- https://en.wikipedia.org/wiki/Rings of Saturn
- https://www.space.com/23235-rings-of-saturn.html
- https://spaceplace.nasa.gov/saturn-rings/en/
- https://en.wikipedia.org/wiki/Rings_of-Uranus
- https://www.universetoday.com/19288/uranus-rings/
- https://en.wikipedia.org/wiki/Rings of Neptune
- https://www.nasa.gov/mission_pages/cassini/multimedia_ /pia07966.html
- https://www.universetoday.com/21635/rings-ofneptune/
- https://physics.stackexchange.com/questions/148718/ho w-does-the-moon-stay-in-orbit

https://www.youtube.com/watch?v=2Wgij1b4DJM