TEACHING UNIT 2

Introduction to Perception and Actuation in Al

DEVELOPING AN ARTIFICIAL INTELLIGENCE
CURRICULUM ADAPTED TO
EUROPEAN HIGH SCHOOLS

2019-1-ES01-KA201-065742

erasmus.aiplus@udec.es

Co-funded by the
Erasmus+ Programme
of the European Union

= UNIVERSIDADE DA CORURA

Co-funded by the
Erasmus+ Programme

Al FOR PRE-UNIVERSITY EDUCATION

+ of the European Union
INTRODUCTION eciiiiitiiiiiiniiiiiiiiecinietesessteesssseeessssaeesssssseessssssnsssssssesssssssnsssssssssssessansssossans 3
CONTEXT ctetriiiititiiniritintrir e cestnr s cesasr e e sasn s e essass s s essabs s s essasnsessssssasssssssassssssnesssses 3
LEARNING OBJECTIVES ..uuttiiiiitiiiniiiiiniiecinneessnseecsssseeessssaeessssaesssssssesssssssesssssssesssssans 3
L0 1 I N 4
TEMPORARY ORGANIZATION c.cetiiiiiriiiiniiiiinieciiinecinreecnssnescsssessssssnnesssssnsssssssnsssssssneses 4
NECESSARY RESOURCES ...uuuiiiiiitiiiniiiiinittcinitecnnntecssssneesssseessssssesssssseesssssassssssanssssssans 5
BIBLIOGRAPHY ceuviiiiititiiiiitiiiiiitiiniitc et sesaaessessae s sessate s ssatssesssssssssssnesssssssssssssssssssssane 5
GROUPS .ttt cesanr s e sabr s s s sbr s s essab s s s e sssbs s s ssssbsessssssnesssssnesssnns 5
CHALLENGE / PROJECT ..cuteeveeeeeesueeeesnestessessestesseseessessesssessessesssessesssessassesssessasssessesssessanne 6

B YN U I] R 28
COMPLEMENTARY ACTIVITIES.cccuuuiiiiitiiiiinreiiiiieeiniieeenineecssniessssnnesssssssessssssesssssssnsss 29
ANNEX ittt ettt e saae s e sabt e e saat s e ba e s s s s ba e e sabb e s sesbb e e s e baessesnbaes 31
ANNEX I: GUIDELINES FOR INTERFACE DESIGN...cccovuiiiiinriiirinriiininneeininneecnnnneecnnnneecnsnnnee 31
ANNEX [1: STUDENT’S SURVEY ..coiiiiitintineineeietiitcnteseeniesssesatsesteestesssesseesnesnsssnsesssessses 33
ANNEX I1I: TEACHER RUBRICSccootiiiiitiiiiiiiiiiineteniecsssaeesssssaeesssssaesssssssssssssssessssssasesns 34
ANNEX [V: STUDENT'S WORKSHEET ...cutiiiiietititiiteetenieseteetenteesteseesseeseesasesssessaessnes 35

erasmus.aiplus@udc.es 2

Co-funded by the
Erasmus+ Programme
of the European Union

Al FOR PRE-UNIVERSITY EDUCATION

Perception and actuation are the two first topics of Al we will cover in these introductory
Teaching Units (TUs) from a practical perspective. They are, probably, the two topics that
students are already more familiar with, because they are treated in other technological subjects
like robotics or programming (for instance, in languages like Scratch).

The objective of this TU is not to show all the possible sensors and actuators that can be used in
Al, but to understand how to apply some of the most relevant and start thinking about the type
of smart applications that can be developed with them.

To this end, in the current TU, students will develop a smartphone app that uses the three most
important sensors in Al, cameras, microphones and tactile screens, as well as two very relevant
actuators, speakers and LCD screens. With them, students will create a simple but useful app
that exploits human-machine interaction to capture and show information to the user in a
natural way. This app will be improved in the next TU, so its real utility will be clear then.

For the student to adequately meet the learning objectives of this TU, they must have the
following prior knowledge:

¢ Programming: students must have experience in block-based programming. They should
have learned the following basic topics: conditionals, loops, functions, and variables. There
are specific recommendations about this in section 4.3 of the introductory TU, so we assume
that students have followed them.

e Basic knowledge of MIT App Inventor: students should have basic knowledge about the
App Inventor application (https://appinventor.mit.edu). To start programming with App

Inventor, they should follow two main steps:

1. Understanding the interface: App Inventor consists of two main parts, the Designer
and the Blocks Editor. To learn how to use them at classes, you should read carefully
the contents described at this link.

2. Learning the basics: we highly recommend carrying out the beginner tutorials that
can be found at this link. Specifically, students should perform those called: "Hello
Codi!", "Talk to Me", "Ball Bounce" and "Digital Doodle".

Once students have finished this TU, they will have acquired the following knowledge:

SPECIFIC
e QR code sensing fundamentals
e Speech production fundamentals
e Speech recognition fundamentals
e Human-machine interface fundamentals
e Gyroscope and magnetometer sensors fundamentals

erasmus.aiplus@udc.es 3

https://appinventor.mit.edu/

Co-funded by the
Erasmus+ Programme
of the European Union

Al FOR PRE-UNIVERSITY EDUCATION

TRANSVERSAL
e App Inventor software usage
e Computational thinking: conditionals, variables, and functions

To start working with perception and actuation in Al, students will develop a smartphone app
using App Inventor. Specifically, they will use the following smartphone sensors:

m Information provided

Camera School place name by scanning a QR code

Gyroscope and . . .
¥ P Phone’s spatial orientation

magnetometer
Microphone User’s speech
Tactile screen Button that is clicked by the user

Regarding smartphone actuators, in this TU, we will use:

m Action performed

Speaker To show app information by voice

LCD Screen To show app information through the smartphone display

The TU proposes a main challenge to be solved by students. To achieve it, it has been divided
into 2 activities of 2 hours each, and each activity has been organized into a set of small tasks, as
shown in the scheme below.

Task 1 Task 2 Task 1 Task 2 Task 3
30 Minutes 1 Hour and 30 Minutes 1 Hour 30 Minutes 30 Minutes

Session 1 — Activity 1 Session 2 — Activity 2

Fig. 1 Temporary organization

erasmus.aiplus@udc.es 4

Co-funded by the
Erasmus+ Programme
of the European Union

Al FOR PRE-UNIVERSITY EDUCATION

The following hardware elements are required to carry out this TU:

1. A WI-Fl network, with internet connection.

2.

A laptop or computer per group connected to the WI-FI, and with a text editor software

installed.

An Android Smartphone (preferably from the students’) per group, connected to the

WI-FI, and with two apps installed:

e The App Inventor app called “MIT Al2 Companion” which can be obtained at Google
Play in this link.

e A QR code reader app called “Barcode Scanner” which can be downloaded
following this link.

The Smartphone used in each group should have gyroscope and magnetometer. To

know it, we recommend to install an app like Sensor Box or similar.

Recommended: a projector to show the TU material (App Inventor screen, multimedia

resources, etc.) to all students in case it is necessary.

Regarding software, the following elements are required to carry out this TU:

1.

Every group must have an active App Inventor account.

Template app: To adjust the TU duration, we provide an App Inventor project as a
template to focus the attention in Al aspects and not in programming ones.

This template includes the graphic part of the app. It is named
“applnventor_template_TU2.aia” and it must be stored in the computer of each group
to be loaded from the App Inventor web application.

QR Codes: QR codes created with the names of the location points will be used in this
unit. Itis proposed to use the page https://bit.ly/3dwelWe to create the codes and to
print them (recommended size 10x10cm).

App Inventor documentation: https://bit.ly/2Wt7Khr

QR code history: https://bit.ly/2ypFp3p

What sensors are in a smartphone?: https://bit.ly/2KZYTOW

Guidelines for interface design: Annex |

The project has been designed to be carried out in groups of 2 students. Each member of the

team will have one role: one will be a programmer and the other a manager.

Although in this TU the main objective is that both students collaborate in the app programming,

the programmer will be focused in the development of the program in App Inventor exclusively.

erasmus.aiplus@udc.es 5

https://play.google.com/store/apps/details?id=edu.mit.appinventor.aicompanion3
https://play.google.com/store/apps/details?id=com.google.zxing.client.android
https://play.google.com/store/apps/details?id=imoblife.androidsensorbox
https://bit.ly/3dweLWe
https://bit.ly/2Wt7Khr
https://bit.ly/2ypFp3p
https://bit.ly/2KZYTOW

Co-funded by the
Erasmus+ Programme
of the European Union

Al FOR PRE-UNIVERSITY EDUCATION

On the other hand, the manager must handle all the aspects required to carry out the app
properly, like taking notes, asking questions to the teacher, managing the time, and submitting
deliverables to the teacher. It is very important that both members are always in agreement
and aware of what each other is doing. That is, although the programmer monitors the
programming, the manager must understand and agree with what the programmer is doing and
vice versa.

The roles should be changed at least once in each session, so that every student performs both.

9.1 Final Objective

The ultimate goal of this TU is for students to learn in a practical way to distinguish the most
relevant sensors and actuators used in Al. To do this, they will have to develop a smartphone
app using App Inventor that helps to follow the optimal path from one location to other inside
the school. Specifically, the app will guide users (visitor, teacher, student...) from their location
to the destination they have selected, based on images and indications. We will call this app, the
School Path Guide. The app will not contain all the Al topics explained in TU1, so some students
maybe do not understand why it is an intelligent app. And it is not, so far. It is focused in one or
two of those Al topics. The important aspect to explain here is that it is a first step towards future
teaching units where we will develop complete Al solutions.

The School Path Guide is an app suitable for any type of educational center, and useful for the
daily life of the entire educational community, but especially for those who do not know the
center, i.e., visitors. It must work as follows: it is assumed that in the center there are different
location points in different places (main hall, classrooms, library...) identified by a QR code,
which has been coded with the location name. When the user arrives at one of these points,
he/she scans the QR code through the app using the smartphone's camera. Once scanned, the
app shows a list of possible destinations and the user selects the desired one. From this moment
on, the app shows the optimal path to follow to reach the destination through photos and
instructions displayed in the screen.

This app includes more Al topics than just perception and actuation, like representation or
reasoning. Hence, it has been divided in two parts, which will be performed in two different
units. In the current one, only the part that related to sensing and actuation will be carried out,
so the School Path Guide will not be fully functional until the next TU will be finished.

Summarizing, in this TU, the app that students have to develop must perform the QR code
scanning, the smartphone orientation sensing, and show such information to the user in a
natural manner. In fact, the main feature that must contain the app is a natural interaction with
the user, a very relevant topic of Al systems.

The app functioning is shown in the video called "TU2_APP.mp4" that is included in the TU
resources. Student must watch it to understand the kind of solution they have to achieve. As

erasmus.aiplus@udc.es 6

Co-funded by the
Erasmus+ Programme
of the European Union

Al FOR PRE-UNIVERSITY EDUCATION

shown in the video, the application contains two different screens: a first one where the QR scan
button is located, and a second one where the sensed information is displayed, including a
compass. In addition, in the second screen, the user has a button where it can activate the voice
guidance and perform speech interaction. The details of the app development will be explained
in the following sections.

9.2 Activities

Dividing a global challenge in tasks that lead to the challenge completion is a key competence
in STEAM methodology that students must acquire. In these initial TUs, we will provide such
division to show how it can be carried out in different problems.

Therefore, as shown in the time organization section, the project is divided into two activities,
one for each of the two screens, and each of them implies a different number of tasks. Fig. 2
displays a diagram that must be explained to students, and which summarizes the steps that
must be followed to develop the program.

Adapt the design
of the App to
the center

(Screent)

ACTIVITY 1

(2]

Programming the
scan button to
read QR codes

and the exit

©

Send the
scanned value
and show it at

Screen2

o

Programming a
compass
(Screen2)

ACTIVITY 2

(5)

Speaker
programming
(Screen2)

o

Speech
Recognition
Programming
(Screen2)

(Screeni-
Screen?)

button to close
the application
(Screenl)

TASK 2

* - -
® - — -

Fig. 2 Flowchart of the application development process

9.2.1 Activity 1

Goal: Programming the button actions of the first screen of the app and sending a variable to
the second screen. To do it, the students will start with a project already created that includes
the visual design of the screens.

Duration: 2 Hours.

Tasks: This activity has been divided into 2 tasks to be accomplished by students.

erasmus.aiplus@udc.es 7

Co-funded by the
Erasmus+ Programme
of the European Union

Al FOR PRE-UNIVERSITY EDUCATION

e Activity 1 -Task 1
Goal: Change the UDC logo and the name "UDC Path Guide" to the specific school in Screen1.

Duration: 30 minutes.

The objective of this first task is just to load the template app so students can see the visual
aspect of the app they will develop. The different elements included in the screens will be
revised, and two of them must be modified to adapt the app to each specific school.

To start, each group must login in the App Inventor page (http://ai2.appinventor.mit.edu/) in

their computer. The first time, some warning messages appear that must be closed. Once the
main window is open, it is necessary to import the project template. To do it, they must click on
“my projects” -> “import project (.aia) from my computer”, as shown in Fig. 3, and select the file
“applnventor_template_TU2.aia” provided with this TU.

@

MIT
BB, APP INVENTOR

Start new project
My Projects ‘ L

! “"i’”‘i”!‘i“ g

Name | Import project (.aia) from a repository

My Projects » Connect Build » Settings + Help »

Fig. 3 Screen capture showing the menu to import the project template

If loading is correct, the screen displayed in Fig. 4 should appear. The first time the program is
open, it is convenient to use a large size (minimum tablet size) in the Viewer window and click
on “Display hidden components in viewer”. As usual in App Inventor, the screen shows the
component palette on the left, the smartphone screen viewer in the center and, on the right,
the list of added components and the properties of the selected one. The template contains the
graphic elements with a basic design of the app and some pre-programmed blocks, which will
be directly used or slightly modified to be applied in the TU.

It is recommended that, to obtain an optimal result in the final app aspect, every group connects
the smartphone to the computer (by USB cable or WI-FI), as explained at
https://appinventor.mit.edu/explore/ai2/setup. This way, the resulting screen will be displayed

at the smartphone and students can observe the changes on-line. Once the connection has been
established and the “MIT Al2 Companion” app is launched in the smartphone, the screen shown
in Fig. 5 should appear.

erasmus.aiplus@udc.es 8

http://ai2.appinventor.mit.edu/
https://appinventor.mit.edu/explore/ai2/setup

e Co-funded by the
Al FOR PRE-UNIVERSITY EDUCATION Erasmus+ Programme

of the European Union

b N MyPojcia s Copnect »

Mi
R APP INVENTOR

User Interface.

Button

UELE

l Scan your location

Layout

ewer .
| —— ¥ |
i
Drawing and Animation '
Maps

Sensors

Media

Social

UDC Path Guide

">c.
| -

Scan your location

Fig. 5 Appearance of the application on the smartphone

The app design that can be seen in Fig. 4 includes, from top to bottom: an horizontal space with
the Al+ logo on the right, a vertical space, a text box where you can read "UDC Path Guide", the
UDC logo, a first button to start scanning, a second one to exit the app, and a final horizontal
space. The visual aspect of the app (Fig. 5) is important, and students must know its relevance.
Although the objective of this TU is not on creating user interfaces, the human-machine
interaction depends on how the information is shown to the user, so some basic guidelines are
provided at Annex I: Guidelines for interface design. It is recommended that students read this
annex on their own so they can develop new interfaces in the future.

erasmus.aiplus@udc.es 9

: e Co-funded by the
+ Al FOR PRE-UNIVERSITY EDUCATION Erasmus+ Programme

of the European Union

The task students must carry out in this taskl is simply to change the UDC logo by the one of
their school, as well as the text “UDC Path Guide” for “school name Path Guide”. If they have
developed the recommended App Inventor tutorials, it should be very simple for them, and no
help should be required.

The following steps are include to guide the teacher in the correction: the first step is to modify
the object properties in the “Properties panel” (shown in Fig. 6 and Fig. 7). To change the school
name, it is necessary to select the component by clicking on the text label or by selecting it
directly in the component panel (Label2). Then, in the right panel, all the properties of the
component will be shown and it will be necessary to change the “Text” property, as shown in
Fig. 6).

Zalette Viewer Components Properties

Ib_title

User Interface

@C Path Guide

T —

- o
==,
v l Scan your location

=R

Media Exit

Drawing and Animation '

Maps

Fig. 6 Screen shot that shows the property of the label that must be changed to modify the text

@ w

Layout

On the other hand, to change the logo, the first step is to select the component (by clicking on
the logo or by selecting “Image2” in the components menu) and upload the new logo in the
“Picture” property. This logo should have the proper dimensions in order to maintain the same
aspect as the original, so students should adjust both width and height.

Palette Viewer Components Properties

image_logoschool

User Interface

v
-

Fig. 7 Screen capture displaying the image properties that must be modified in order to resize and change the image

erasmus.aiplus@udc.es 10

Co-funded by the
Erasmus+ Programme
of the European Union

Al FOR PRE-UNIVERSITY EDUCATION

Fig. 8 displays a possible solution to this task with a new text and logo, although the original UDC
logo and text will be used throughout the TU.

Gll Path Guide

'BE
& o ;

Scan your location

A
!

Fig. 8 Aspect of the app after changing the text and logo
e Activity 1 - Task 2

Goal: Program the scanning button, perform the QR code scan, and send the read classroom
name to Screen2. To check the successful implementation of this task, the scanned value must
be displayed on Screenl and Screen2 in text labels.

Duration: 1h. 30min.

To make the app functional, it is necessary to provide action to the buttons. Specifically, in the
first screen there are two possible buttons: Scan your location and exit the application.

We can start with the exit button, because its programming is much simpler. The programming
of this button action can be carried out by students autonomously. In what follow, we provide
a step by step explanation just in case it is needed.

The first step is to know the name of this button (the text displayed over the button is not the
name of the component) in order to access to its options. To do it, go to the design editor, click
on the button and check the highlighted name in the components' menu (Fig. 9).

erasmus.aiplus@udc.es 11

e Co-funded by the
Al FOR PRE-UNIVERSITY EDUCATION Erasmus+ Programme

of the European Union

Properties
btn_exit

BackgroundColor
B oefaun

Enabled
v

FontBold

Fontitalic

UDC Path Guide
=1

= »

BarcodeScanner]

Image

Rename Delete

,, R 5

Eudcp*; o

Gl Logo_Gii png

Upload File

Fig. 9 Capture showing how to know the name of the Exit button

Now, if we click on the exit button in the block editor, it is possible to see that there are different
options associated with this component (Fig. 10). In this case, what is needed is that when the
exit button is clicked, the application is closed. Therefore, we must use the event handler that
reacts to the click "when btn_exit.Click" (top one in Fig. 10).

ooKs Viewer
M procedures - ‘when Click
8 Uscreent do
8 Borizo
&image_logoai ‘when GotFocus
HorizontalArranger do
HerizontalArrangemer
A o_tite when (TN LongClick
HorizontalArrangemer do
&image_logoschool
HorizontalArrangemer when (T3S LostFocus
do

Bvtn_scan
HorizontalArrangemer

Dtn_ext
do

BarcodeScanner]

W TextTospeechl

when TouchUp

N Notifier1
do
@ Any component
»
Rename | Delete btn_exit - ¥ BackgroundColor -
Media P4 bin_oxit - J EackgroundColor -~ g
G sitogo.pra "btn_exit - | Enabled -
@ attavoz prg
set (TINCHED - ETETED to
ﬂhackn\;
& ackorounaz oo bin_exit - M FontBold -
G button png
& compass.png B bin_exit - W FontSold - R0
ﬂudcpng

Cbin_exit - I Fontitaiic -

Upload File

Fig. 10 Programming options of the exit button component

erasmus.aiplus@udc.es 12

Co-funded by the
Erasmus+ Programme
of the European Union

Al FOR PRE-UNIVERSITY EDUCATION

Once the event is known, it is necessary to add a block to close the application. To do it, we
move to the control blocks (Fig. 11), select the "close application” one and insert it into the event
handler as displayed in Fig. 12.

iocks Viewer

B Built-in - -
Hcontro for each (727) with (.117) in dictionary
B ogic
Mt

do
[- while test
do
Wists
if

Moictionaries

Mcoiors

then
W variables
else

W erocedures

8 [screem
2 D HorizontalArrangemer
& image_logoai
B orizontal arranger evaluate but ignore result
B HorizontalArangemer
open another screen screenName
e
Borzontataangemes . open another screen with start value screenName
=
“ > startValue
Rename | Delete
get start value
Media
N
[l silago.png
= close screen with value result
altavoz prg
[l acicpng close application
Bl bacigrounaz jpg
Bl bution. - get plain start text
B compass.ono

close screen with plain text text
B i png amings
Upload File ..

Fig. 11 Control programming options

when (IR Click

do | close application

Fig. 12 Exit button programming

Secondly, to program the Scan your location button, students must understand its functioning:
when clicked, it should load the barcodescanner component of App Inventor, which opens a
scanning app in the smartphone and performs the reading. The captured information must then
be transferred to Screen2 to display the name of the location point where the user is placed.

At this point, students should revise some basic information about QR codes. To do it, we
recommend using web resources and multimedia material as:

e https://bit.ly/3fjlJIu

e https://bit.ly/3b8kL5n
e https://bit.ly/35rv7vQ

Teachers should previously check these resources and select the most appropriate for their
groups, or provide new ones better adapted. It is not required a deep knowledge of QR codes,
but a proper understanding of what they encode and which information they provide.

Once revised, students should perform autonomously the basic programming of the Scan your
location button as the result of this task2. To do it, they should apply the basic knowledge gained

erasmus.aiplus@udc.es 13

https://bit.ly/3fjJJlu
https://bit.ly/3b8kL5n
https://bit.ly/35rv7vQ

Co-funded by the
Erasmus+ Programme
of the European Union

Al FOR PRE-UNIVERSITY EDUCATION

by programming the Exit button to associate actions to buttons in App Inventor. Moreover, they
must remember the basics of App Inventor on how to send values between screens.

A possible solution to this task is now provided:

When the button is clicked, the barcodescanner component of App Inventor must be called to
perform the scan. In the blocks editor, if we click on this component of the Blocks panel, the
different options associated to it may appear (Fig. 13). Specifically, in this case, only the first two
blocks will be needed: the "when BarcodeScannerl.AfterScan" event handler and the "call
BarcodeScannerl.DoScan" function call.

The scanner must be called first to launch the scanning app. This call will be made in the event
handler of the Scan your location button. To do it, again, it is necessary to know the button name
(in this case “btn_scanner”). Then, we must select the event handler of the component that
responds to the button click (“when btn_scanner.Click”), and insert the scanner call on it (“call
BarcodeScannerl.DoScan”), as indicated in Fig. 14.

Blocks Viewer
B Built-in
LU CL N BarcodeScanner] - WG G el
B zontro D
= Logic do
W ran
]
Test (='W BarcodeScanner! - WELATED]
Moz
M pictionaries -
M coiors —
=, q BarcodeScanneri - I UseExternalScanner - I
Variables
R B EarcodeScanncr1 -~ o
=] _Sererl
2 Puorizomalarrangeme
.Jlns.;s'l

'Hc-rlzc-nt;l.'\rrange

Herizonta lArrangems

(=] 'Horizon:al!\r Tangeme
AlLabel2

All ahall
4 3

Fig. 13 Programming options of the BarcodeScannerl component

[N i BarcodeScanner! - L&
—

Fig. 14 This block calls the scanner when the Scan your location button is clicked

As a result, now the button has an associated action. When it is clicked, the QR scanning app
opens, so the user can perform scan. Remember that, as established in section 6, this step will
fail if a scanning app is not installed on the smartphone. To try scanning, we recommend that
students create a QR code with a typical school place, like Main Hall, Classroom 1, Library, etc.,
so the reading process can be tested. In Fig. 15, an example of creation of a QR code on the
website recommended in section 6 is shown. The code that appears there contains the name
Main Hall.

erasmus.aiplus@udc.es 14

: e Co-funded by the
+ Al FOR PRE-UNIVERSITY EDUCATION Erasmus+ Programme

of the European Union

L q rd® by Pricing Signin | Register Free Accoun

Create a transparent, scaleable QR Code in printable vector format downloadable as SVG file.

EPS QR Code PDF QR Code
LMam Hall]

QR Code Guide

Read Checklist before
using this QR Code

L]
o Level L . Level M . Level Q . Level H

Level L: 7 % of the QR Code may be damaged to be reconstructed.

Download QR Code

Fig. 15 Capture of the website where the QR codes are created

The next step in the program is to save the value read with the barcodescanner. The event
handler "When BarcodeScannerl.AfterScan" should be used for this purpose. It is interesting
that the students display the obtained value in the screen to better understand the information
provided by this sensor. To do it, they should add a label to Screenl, as shown in Fig. 16, and
load the result in it. Now, when students click on the Scan your location button, the read value
will be displayed on this label, as shown in Fig. 17 for the QR code created in Fig. 15. Students
can now create different QR codes with other texts in order to understand the type of textual

information that can be used, which will be displayed in the text label.

| —

lg)c Path Guide
M

\ 3= BarcodeScanner1 « FUAEEED
do :et Ib testscanner ~ [Text ~ OB (-4 result - |

Scan your location

Fig. 16 Left: test label added to Screenl. Right: code needed to show the scanned information

erasmus.aiplus@udc.es 15

Co-funded by the
Erasmus+ Programme
of the European Union

Al FOR PRE-UNIVERSITY EDUCATION

UDC Path Guide

"&,
=<

Scan your location

ol T
Exit

Fig. 17 Screenshot of the Smartphone after scanning QR. The read value is displayed above the Scan your location
button

Now that the scanning process has been understood, the next step is to send the read value to
Screen2 and store it in a variable to keep its value. To verify that is has been done properly, we
recommend displaying the variable content in a text label, in a similar way as performed for
Screenl. Programming this step requires changes in both Screenl and Screen2. In Screenl, we
will have to include the block "open another screen with start value...”, in the "When
BarcodeScannerl.AfterScan" event. Then, we must add the name of the screen we aim to open
(Screen2), and send the scanned result as initial value (Fig. 18).

.- BarcodeScanner! - BAUGHETE])]

result

do [;pen another screen with start value screenName = © *

startValue get

Fig. 18 Open a new window and send the scanned value

At this point, it is time to show how the Screen2 looks like to better understand what will be
done. In Fig. 19 we can see both its format and the components that make it up. There are a
total of 5 important elements (without considering the logo and the background image): a back
button on the top left that allows the user to return to Screenl, a label on the middle where the
user's location is represented (called /b_origin), a compass and a label below it where the
smartphone’s orientation is displayed (called /b_azimuth), and at the bottom, a button that,
when clicked, performs 3 actions:

erasmus.aiplus@udc.es 16

Co-funded by the
Erasmus+ Programme
of the European Union

+ Al FOR PRE-UNIVERSITY EDUCATION

1. Notifies the user location by voice
2. Notifies the user orientation by voice
3. Asks the user if she/he wants to scan another location

'I ee

Fig. 19 Screen2 design capture

To capture on Screen2 the initial value sent from Screenl in a new variable (named “origin” in
Fig. 20), we can use the "get start value" block, which is located in the control blocks. Moreover,
the variable content can be represented in the Ib_origin label, which is shown when Screen2 is
initialized, so it must be placed in the event handler "when Screen2. Initialize" (as shown in the
Fig. 20).

initialize global ([T to | getstart value

(z) when Initialize
don set [EERTORSD - (G ¥ global origin -
-

Fig. 20 Code that stores the value sent from Screen1l in a variable and shows its in a label at Screen2

Now the scanning button can be tested again with some of the QR codes previously created. The
result of this test should be like that displayed in Fig. 21 with the “EPS” text shown.

erasmus.aiplus@udc.es 17

Co-funded by the
Erasmus+ Programme
of the European Union

Al FOR PRE-UNIVERSITY EDUCATION

Fig. 21 Final result of Activityl

To return to Screenl in a simple way, students should program the “back” button in the top left
corner of this second window. They should be able to do this by themselves because it is very
similar to what was developed to open Screen2, as indicated in the Fig. 22. Once the
programming of the back button has been carried out, and it has been checked with several QRs
that the application responds correctly, this task 2 can be evaluated as finished.

when -Click

do open another screen screenName = =

Fig. 22 Programming of the back button

9.2.2 Activity 2

Goal: To program the response of three elements in Screen2:

A compass that indicates the smartphone’s orientation
A button to enable voice information of the user location and orientation

3. A button to enable speech recognition, so the user can say if she/he wants to scan a
new location.

Duration: 2 hours.

Tasks: This activity has been divided into 3 tasks to be accomplished by students.

erasmus.aiplus@udc.es 18

Co-funded by the
Erasmus+ Programme
of the European Union

Al FOR PRE-UNIVERSITY EDUCATION

e Activity 2 - Task 1
Goal: Programming a compass.
Duration: 1h. 20min.

Fig. 19 shows all the elements included in Screen2. One of them has been already programmed
in Activityl, the central label showing the location name, and the others are the objective of the
current activity. In this first task, we will focus on showing the orientation information in the
compass image and in the text label that are placed in the center of the window (see Fig. 19).

Remember that the final objective of the smartphone app that is being developed in this TU and
the next one, is to guide the user towards a destination in the school. For any guidance to be
effective, it is necessary to provide the user with information regarding its orientation, so she/he
can follow the right direction and sense. Outdoors, this type of information can be obtained
from the GPS sensor, but indoors it is not available. The sensors we can use to obtain an
equivalent data are the gyroscope and the magnetometer included in most of modern
smartphones. With them, we will program a compass in our app, which will show the user
direction relative to the geographic cardinal points. It is very important to remark here that if
the student’s smartphone do not have these sensors this taskl cannot be carried out. This is
the reason why it was recommended in section 6.

At this point, students should learn the basics of how gyroscopes and magnetometers work. We
recommend that they watch the following multimedia material, although many others could be
selected by teachers:

How gyroscope works: https://bit.ly/35whijiq

How magnetometer works: https://bit.ly/3c3y346

App Inventor includes the information from these two real sensors in a virtual orientation
sensor, which can be used to create our own compass. This sensor returns the following three
measurements from the smartphone, in degrees (see Fig. 23 for a better understanding):

e Roll: 0 degrees when the device is level, increasing to 90 degrees as the device is tilted
up onto its left side, and decreasing to -90 degrees when the device is tilted up onto its
right side.

e Pijtch: 0 degrees when the device is level, increasing to 90 degrees as the device is tilted
so its top is pointing down, then decreasing to 0 degrees as it gets turned over. Similarly,
as the device is tilted so its bottom points down, pitch decreases to —90 degrees, then
increases to 0 degrees as it gets turned all the way over.

e Azimuth: 0 degrees when the top of the device is pointing north, 90 degrees when it is
pointing east, 180 degrees when it is pointing south, 270 degrees when it is pointing
west, etc.

erasmus.aiplus@udc.es 19

https://bit.ly/35whjjq
https://bit.ly/3c3y346

Co-funded by the
Erasmus+ Programme
of the European Union

Al FOR PRE-UNIVERSITY EDUCATION

Azimuth T

Fig. 23 Demonstration of roll, pitch and azimuth

To create a compass-like sensor, we just need to show the Azimuth information of the
orientation sensor on Screen2. This can be carried out by students autonomously, but we
recommend explaining them how to do it for the compass image, and then they solve the text
label case:

In the blocks editor, if we click on the orientation sensor in the Blocks panel, we can see the
different options associated to it (Fig. 24). The azimuth readings will be represented, and they
must be refreshed each time the user moves, in other words, each time there is a change in the
orientation sensor. Therefore, it will be necessary to use the first of the blocks "when
OrientationSensorl.OrientationChanged".

The information will be displayed in the compass image on the middle part of Screen2, which
must work as a real compass. Hence, it is necessary to understand how this type of instrument
works in order to program it. We recommend students to observe the parts of a digital compass
(for instance the one that comes with the smartphone, or other in a video), to realize that it is
composed by two types of elements (see Fig. 25). Fixed ones, like the mark that indicates where
the centre of the compass is and the arrow that shows where the smartphone is oriented, and
moving ones, a wheel with the rotation degrees, and the cardinal points (N, S, E, W).

erasmus.aiplus@udc.es 20

Co-funded by the
Erasmus+ Programme
of the European Union

Al FOR PRE-UNIVERSITY EDUCATION

P

W variables -

W erocedures
& [Jscreenz

e E HorizontalArrangemer

B Horizontalis
lorizontal Arranger on onsensort ~ W Anaie -
e EHonzonta\Arranger
(Hatrn_nack o[GrientationSensori - i Avallable - |

E image_ailogo

q OrientationSensor1 - I Azimuth - I
EHonzonta\Arranger
DHorlzontalAnangemer q OrientationSensor! - lEnabIed . I

e (@ verticalrrangement1

® Bronoanmrae| (T

m‘b,ungm
Cl DVemcalArrangement:i L © ensorl - l (D |
f’/AN tifier - = -
== ' OrientationSensor1 - & Pitch - |
@OriemaﬁonSensnﬂ
-TextToSpeecm OrientationSensor1 - & Roll - |
@ Any component P
il » CrientationSensor1 -

\ Rename Delete /

Fig. 24 Programming options of Orientation Sensor

\ Fixed Part Moving Part Compass /

Fig. 25 Compass format

To represent these two parts properly in App Inventor, the fixed part will be loaded on a canvas
and the moving part on a sprite, being this last the one where the orientation sensor data will
be displayed. To program it, the important point is to understand that the sprite should always
move to the orientation angle detected by the orientation sensor. As we can see in Fig. 25, the
sprite component (which in this case has the name ImageSprite1), has many options, but here
only the "set ImageSpritel.Heading to" will be used.

Students should copy the blocks shown in Fig. 27, understand what they do, and try them. When
executed, the top of the sprite always points north, and the wheel value changes as the
smartphone moves.

erasmus.aiplus@udc.es 21

> REE Co-funded by the
Al FOR PRE-UNIVERSITY EDUCATION Erasmus+ Programme

of the European Union

= e N

ﬂHnnznntalArmngemems - (=1l ImageSprite - BEITIETEG
_:’Venicalﬂrmngemen('l target

3 jH crizentalArrangements

[A]1b_origin b ImageSprite1 - !Enabled 3 |

JVeni:aIArrangementS
3 ﬂHarizanmlArrangememg @Imag i 'IEndjled 'm
jHorizontalArrangemem — —
q |"“'ESSE“IE1 - I Heildlﬂ M I
8 [Hcanvast
= y
/= ImageSprite] @ gesprite] - l:. pT— E

a anriznnta\Arrangement'

Al 1b_azimuth ImageSprite1 - | Height - |
_’VemcamrrangememT
st (METSTEIRS - GEFIES to
Jhtn_speak
ﬂl—lorizon[al.ﬂ\rrm.y ment qllllaEeSEnlM - l.ntewa. - I

s otifier]
| orientationsensart @lmagesprim - 'In‘lenral - m
counter 0
9 TextTos, :
peechl
: -
¥ component - ImageSprite - _
d »

Fig. 26 Programming options of Sprite

1Ll OrientationSensor] -~ BOLGELIETHEEEN)

Fig. 27 Programming the compass Sprite

Starting from this code, students must be able to finish this task autonomously and represent
the orientation degrees on the corresponding label as shown at Screen2 (named Ib_azimuth),
including the degrees symbol on the right of the reading, and without representing decimals
digits. A solution to taskl program is displayed in Fig. 28.

17 =l CrientalionSenzor! - Bl ST EL

- W imagespritc! - W Heading - KRG, | azimuih - |

=¥ b_azimutn - W Text - NG L round - IHE o azimuth -)
n“:

e

Fig. 28 Compass programming

To test if the students’ implementation works properly, the value shown in the compass image
and the one in the text label must be the same and change every time they move. Fig. 28
contains a screen capture of the app aspect with an orientation of 1209.

erasmus.aiplus@udc.es 22

Co-funded by the
Erasmus+ Programme
of the European Union

Al FOR PRE-UNIVERSITY EDUCATION

Fig. 29 Screen2 capture

It is possible to see that, although the compass works, it does not respond perfectly, because
even if the mobile is not moving, the degrees always vary a little. At the level of realistic
operation of this app it does not influence the result, but from a visual level, it is annoying and
somewhat disconcerting. For this reason, an improvement of the compass response to make it
more stable is proposed as a complementary activity for students (Compass Adjustment).

e Activity 2 - Task 2
Goal: Programming the voice help button.
Duration: 20 Minutes.

As commented in the introduction of this TU, one of the most important topics in Al is that of
human-machine interaction, and throughout the curriculum, students will learn its
fundamentals. Regarding perception and actuation, the most important is to understand that a
proper interaction with humans must be carried out using the sensors and actuators more
similar to human ones. That is, a natural interaction with humans must use cameras to detect
faces and objects as humans do. Moreover, it must use microphones and speech recognition
techniques to detect sounds and words. Finally, Al systems should communicate with humans
through speakers using speech and showing written information on screens.

Considering these aspects, in this task2 we aim to improve the app usability by including a button
in Screen?2 that enables voice information of the user location and orientation. To do it, we will
use the smartphone’s speaker. This is a well-known element for students, so we leave to the
teacher’s consideration to explain students the fundamentals of how speakers work. What is
more interesting for students to understand in this scope is how voice synthesis works

erasmus.aiplus@udc.es 23

Co-funded by the
Erasmus+ Programme
of the European Union

Al FOR PRE-UNIVERSITY EDUCATION

(automatic text to speech). In the following resources, teachers can find fundamental concepts
that we recommend students to check with attention:

e Text to Speech, how does it work?
e Text-to-Speech Technology: What It Is and How It Works

e Speech Synthesizers

To do it, it will be necessary to use the TextToSpeech component of App Inventor (Fig. 30). This
component has been already included in the project template for students. As shown in Fig. 31,
the component has several blocks, but in this case only the "call TextToSpeech.Speak" will be
used. This block has one input called “message” in which we must add the text we want to
transform into speech. With this information about the TextToSpeech component, students
should program its response autonomously. An important point here to be explained to students
is that the text spoken to users must be clear, respectful and brief, that is, the programmer
must focus simply in transmitting the desired information to the user.

Layout
Media
@ Camcorder

@ Camera

ImagePicker
@ Player
@) Sound
@ SoundRecorder

B, SpeechRecognizer

W TextToSpeech

£ VideoPlayer

Y YandexTranslate

Drawing and Animation

Fig. 30 Media Palette

erasmus.aiplus@udc.es 24

https://youtu.be/M2oVchJIC2o
https://www.understood.org/en/school-learning/assistive-technology/assistive-technologies-basics/text-to-speech-technology-what-it-is-and-how-it-works
https://www.explainthatstuff.com/how-speech-synthesis-works.html

Al FOR PRE-UNIVERSITY EDUCATION

REE Co-funded by the
A Erasmus+ Programme
> of the European Union

iocks

Viewer

™ HorizontalArangemer +

e [verticalArrangement1
e jHorizonmlArranger
i‘\h,origin
8 [WverticalArrangement3
© P Horizontalaranger

P orizentalarran
e |[Hcanvast
= |mageSpritel
8 B orizontalman
M Ib_azimuth
(B verticalarranger
Hotn speak
M Horizontalarran
A notifier?
j]DrientationSensorT

W TextTospeechl
@ Any companent -
Rl »

Rename Delete

Media

@ aitogo.png

Bl attavoz png

Gl back png

dl background2 jpg

[l tustton png

[l compass.png

ﬂ udc.png

LUCLN TextToSpeechl « BENGIRT EEL]

when QLSS IIED BeforeSpeaking

do

(=l TextToSpeechi - R4

message

o TextToSpeechi -) AvailableCountrizs - |

q Te:dTuSEeecM - ICoumm - I
mTeﬂTnSpeem1 E I(}nunlry B
q Te:dTuSEeecM - I Laﬁuaﬂe - I
@TanSpeem E 'Lan uage - m

GEED to

- TextloSpeechl -

W TexiToSpeechi - i Result - |

o TextToSpeechi - 'SpeechRate -1
@TanSpeem = ISpaechRam g m
TextToSpeech! -

Upload File

Fig. 31 Programming options of Text To Speech

In what follows, we include a possible solution just in case it is necessary:

The module call must be placed into the event handler "when btn_speak.click". The spoken
message should include the user location (saved in the origin variable) and orientation (using
the OrientationSensorl.Azimuth block which is located between the Orientation Sensor blocks).
It is important to highlight here the relevance of using variables to store perception data,
because now we can access to them without needing to read them again. Since we are dealing
with two different variables, it is necessary to use the join block in order to put them together,
as shown in Fig. 31. In addition, it can be observed that we have added the text “You’re in... and
you are oriented towards ...”, with the aim of communicating with the user in a simple and
straightforward way.

To test the student’s implementation is very easy: each time the speaker button is touched, the
smartphone “says” the location (last QR read) and the orientation, which must be the same
value that is displayed in the compass. It is important to check the message spoken to the users
avoiding inappropriate texts.

@ call (ECSTENRS Speak
message

g ‘fou're in the |
"~ global origin - |

@ and you are oriented towards
'round - | OrientationSenzorl - |

Fig. 32 Voice help button programming

erasmus.aiplus@udc.es 25

Co-funded by the
Erasmus+ Programme
of the European Union

Al FOR PRE-UNIVERSITY EDUCATION

e Activity 2 - Task 3

Goal: Programming the speech recognizer.
Duration: 20 Minutes.

With the same objective of the previous task, in this one we aim to improve the app usability
and the natural interaction with the user by including speech recognition, so the user can speak
to the app to return to start scanning again. The SpeechRecognizer component of App Inventor
takes the smartphone’s microphone to capture the user voice and then it transforms this audio
into text that can be used in the program. At this point, teachers can introduce the basics of
microphones to students in case they consider it interesting for them, although it is a well-known
sensor and most of them are familiar with it. What is relevant here is that students understand
how the speech recognition process works, so the following material should be checked
carefully:

e Behind the Mic: The Science of Talking with Computers

e Speech recognition software

The SpeechRecognizer component, shown in Fig. 33, has many associated blocks. In this case,
we only need the “call SpeechRcognizerl.GetText" and the "when SpeechRecognizerl.
AfterGettingText". The program that students must develop should provide the following
response: each time the user touches the speaker button programmed in task2, the app says
the location and orientation. Then it will ask the user by voice if she/he wants to scan a new
location. If the answer is YES, Screenl should be opened. If it is NO, nothing happens, and the
app remains in Screen2. Now, students should be able to program this response autonomously.

socks Viewer
Harizontalhrrangeme &
8 [Wvericalrrangsment] when AfterGettingText
8 PHorizontalArange result partial
Al1b_origin
8 [Averticalhrrangements
IHarizontalArrange
8 Bcamest when BeforeGettingText
& magesprite] do

B verticalimrangeme

Tt
8 ElHorizontalArange W SpeechRecognizer! ~ ey
Allb_azimuth

‘_Vﬁ'ﬁma"gem (=W SpeechRecognizer! - BT
Bbin_speak

A\ Nonifier1

S o[SpeechRecognizeri — J Result -]
Orientat sarl

?Temcswcm ¥ SpeechRecognizer! - I UseLegaﬂ - I
1
@ Any component - .
] ’ mSpeeleeuugmzeﬂ - 'UseLegacy - ﬂ
Rename = Delete
SpeechRecognizer! -

Media
Fig. 33 Programming options of Speech Recognizer

A possible solution is provided in what follows: the first step is to modify the TextToSpeech
component programmed in the previous task, adding a text to ask the user if she/he wants to

erasmus.aiplus@udc.es 26

https://www.explainthatstuff.com/microphones.html
https://youtu.be/yxxRAHVtafI
https://www.explainthatstuff.com/voicerecognition.html

Co-funded by the
Erasmus+ Programme
of the European Union

Al FOR PRE-UNIVERSITY EDUCATION

scan a new location. This can be useful, for instance, to know the way back to the origin (the
practical use of the app will be clearer in the next TU). It is important to highlight again to
students that the question to be pronounce by the app to be clear and simple. This modification
is shown in Fig. 33.

4o | call EEEICETEENIRE -Speak
message | (2] join | * INEFIEONGCE "
'+ = global origin -

@ and you are orisntsd towards &

_round - [OrientationSensort - [Azimuth - |
8-
@ Do you want fo scan your new location? o

Fig. 34 Speak button programming with question to the user

Following the previously explained logic of the app response, once the question has been spoken
to the user, the SpeechRecognizer call must be executed. If we put it right after the
TextToSpeech block, it will not wait for the question pronunciation to finish, leading to a wrong
functioning. To solve this problem, in the TextToSpeech component, there is an event handler
(as you can see in the Fig. 31), which is executed when TextToSpeech finishes (when
TextToSpeechl.AfterSpeaking), and it must be used here, as show in Fig. 35.

VI TextToSpeech] ~ BGNETRTEELON]

result.

do call [Getlext
S,

Fig. 35 Calling the voice recognition function

This “trick” can be previously explained to students or leave them find the problem, try some
solutions, and then provide them with the right one.

Once the SpeechRecognizer call has been implemented, the last thing to do is to check the
captured word and execute the proper action. This can be performed using the event handler
"when SpeechRcognizerl.AfterGettingText" and a conditional, as shown in Fig. 35. If the result
is YES, Screenl should be opened (Fig. 36), simply by using the “open another screen” block. If
the result is NO, nothing has to be done, so this option is not included in the conditional.

To check the students’ implementation of this task3 is simple. After saying the user location and
orientation, the app should ask if the user wants to scan another QR and return to the Screenl
if the answer is YES.

AfterGettingText

then | open another screen screenName
"

Fig. 36 Last step after voice recognition

erasmus.aiplus@udc.es 27

Co-funded by the
Erasmus+ Programme
of the European Union

Al FOR PRE-UNIVERSITY EDUCATION

As established in the introductory TU, three evaluation methodologies are proposed for this
TU, with the following weight:

Assessable activity Score ‘
1- Program test 30%
2- Kahoot 10%
3.1- Group report 30%
3.2- Checklist 30%

Final test of the program: at the end of the TU, each group must show the operation of
the developed app to the teacher. To do it, we recommend using different QR codes
with real school places, like the Main Hall or the Library, although it is not required to
fix them to the real places for this TU. The following features should be verified by the
teacher:

e The scanning and exit button work properly.

e The compass works properly.

e If the speaker button is touched, it says both the user's location point and
orientation.

e When the previous speech finishes, the app asks the user by voice if he/she want to
scan a new location, captures the answer and performs the corresponding action.

e The general app functioning is correct, with no stops or pauses.

e The human-machine interaction aspects are correct: clear and direct sentences,
adequate positioning of buttons, etc

e OPTIONAL: if the group has performed optional activities and the app has been
improved, it should be considered in this part of the qualification.

In addition to the direct program test, all students must submit the programming code of their
solution, so the teacher could test it, if required. As this is not a programming curriculum, the

evaluation emphasis will not be on the code quality, but in the previous points.

2.

Final test of theoretical concepts: at the end oftheTU, the students
must fill a kahoot survey individually (Annex II: Student’s survey).

Ongoing work during the TU. This methodologyis very important, and it will
be evaluated using two different elements:

3.1 Individual rubric that the teacher must fill for every activity (Annex Ill: Teacher
rubrics).

3.2 Individual work report (Annex IV: Student’s worksheet), which will be filled by
students throughout the working sessions.

erasmus.aiplus@udc.es 28

Co-funded by the
Erasmus+ Programme
of the European Union

Al FOR PRE-UNIVERSITY EDUCATION

11. Complementary activities
Error Control

It is important to include an error control logic to the app in order to verify that the scanned QR
contains a valid school place name, because in other case, the app will not be capable of guiding
the user. It is always recommendable to develop a reliable smartphone app, which can be used
in realistic conditions. We recommend to provide students with basic guidance to solver this
activity. Basically, to develop the error control, it is necessary to create a list type variable in
which the names of the school places are stored, and modify the event handler
“BarcodeScannerl.AfterScan” to include a conditional that checks if the read value corresponds
to one of these names, showing a warning message in case of unmatching.

inifialize global ([0 Jto | (o] makealist ° =

-

.

.)

o
o

Fig. 37 Initialization of the variable location_points as a list

In what follows, a possible solution to this activity is provided:

Fig. 37 shows how to create the list type variable with the different location points, in this case
corresponding to a UDC building. On the other hand, Fig. 38 contains the modifications that
must be performed to the solution of Activity 1, displayed in Fig. 18. We have added a
conditional in the event handler “when BarcodeScannerl.AfterScan”. To check if the scanned
value is the list, the “is in list?” block has been used. If it is true, the original code included in the
solution of Fig. 18 is executed. If it is false (the read name is not in the list), the user is notified
with a message on Screenl and by voice.

L2\ BarcodeScanner] - ViG]

()
8 sinlist? thing get B o
list = 8 global location_points -
then | open another screen with start value screenMame o *
stariVialue get

else | call RS SIES ShowAlert
nofice g That's not a sife at this school ¢
call Speak

message

-

Fig. 38 Possible solution to open another window or report an error with the scanned code

Finally, regarding the programming to be performed in Screen2, nothing changes by including

this error control.

erasmus.aiplus@udc.es 29

Co-funded by the
Erasmus+ Programme
of the European Union

Al FOR PRE-UNIVERSITY EDUCATION

Compass Adjustment

In Activity 2 — Task 1, the compass was programmed in such a way that, every time the sensor
detects a change of orientation, it is represented, which causes the compass to be in continuous
movement and can even confuse the user. In this activity, it is proposed to adjust the compass
response to make more stable. This instability occurs because, on the one hand, the sensor is
not very accurate and, on the other, it makes many readings per second with small variations
between them (around +5°).

There are many ways to solve the problem, such as computing the average between the
measurements obtained through time and representing. But, here, we have decided to update
the compass value only when it changes notably (for instance, bigger than 52), avoiding thus the
continuous change of values. To do it, it is necessary to compare two values: the current azimuth
value and the previous one. If the difference between them is less than 5, the compass should
continue as it is, and when it is greater, the new position should be loaded. This is the task that
should be proposed to students.

To program this functioning, it is necessary to create a variable in which the value of the azimuth
that is represented will be saved (in this case it has been decided to call it represented_azimuth
as shown in Fig. 39). Moreover, a conditional must be included to check if the difference (in
absolute value) between the two values is greater or smaller than 5. When the condition is true,
it will be time to load the compass position, represent the degrees in the label (without decimals
and with the degree symbol), and save the azimuth value in the created variable, as displayed in
Fig. 40.

initialize global | to 0

Fig. 39 Initialization of the represented_azimuth variable

17 = W OnentationSensor] - e ETGTEED G
do | (&) if ' -
= " global represented_azimuth - |l 4 azimuth - | 8

| 1 global represented_azimuth - |00 < | azimuth - |
Y magesprict - I Hedng - JOR | azimuin -]
ol Ib_azimuth - A Text - RUERETNT W round - BERGE azimuth -

o

Fig. 40 Possible compass solution

With this program, in the first execution, the value of the variable represented_azimuth will be
0 (see initialization in Fig. 39) so, once the orientation is a value higher than 5, the condition will
be true, and the reading will be displayed as commented above. From this point onwards, the
variable represented_azimuth will store the azimuth value that is represented in the compass,
and it will be updated only if the new value differs in an amount of 5. To check the student’s
implementation, just evaluate if the compass response is more stable but still right.

erasmus.aiplus@udc.es 30

Co-funded by the
Erasmus+ Programme
of the European Union

+ Al FOR PRE-UNIVERSITY EDUCATION

Annex |: Guidelines for interface design
The main guidelines students should know about user interfaces are:

e The brand identity will give us the base colors and typographies.

¢ The main logos should be placed on the top of the screen.

e The position and size of the buttons should allow the user to see them clearly and to tap
them with a finger. Avoid using undersized or oversized buttons and a large number
of them in a single screen.

e The colors are important: they should be representative of the app, but not too
intense. Colours help us to priorities texts and also highlight phrases or words that can
be clicked on, such as links. The background colour should be in line with that chosen
for the typography, as a minimum contrast is necessary for legibility and accessibility.

¢ Minimalist design: The design should not be overloaded with information, the user is
looking for a clean app that loads and run quickly.

e Recognized standards: We should remember certain basic standards. For instance, the
magnifying glass icon relates to "Search". Likewise, there are colors called: "reserved
colors" which use should be limited, as red, which is used for errors or alerts and green
for confirmation and success messages.

These are some basic hints to create a good design and ease human-machine interaction. One
of the most useful is having a look at the apps on our phone and try to recognize common
elements (logos positioning, typography size, the colors based on your corporate identity, using
less than 3 colors, etc.).

CONTRAST REPETITION

SR PRINCIPLES o
P LUV [DESIGN
S
<itn -

erasmus.aiplus@udc.es 31

Co-funded by the
Erasmus+ Programme
of the European Union

Al FOR PRE-UNIVERSITY EDUCATION

The image above is representative of the basic design principles. Below there are three links to
videos that we recommend you to watch. They are short and enjoyable and will help you to get
a sense on the importance of the composition, typography and colour.

e Layout & Composition: https://bit.ly/39qDFDz
e Typography: https://bit.ly/2QVEIKy
e Color: https://bit.ly/3avl4aS

erasmus.aiplus@udc.es 32

https://bit.ly/39qDFDz
https://bit.ly/2QVElKy
https://bit.ly/3avl4aS

Co-funded by the
Erasmus+ Programme
of the European Union

Al FOR PRE-UNIVERSITY EDUCATION

Annex ll: Student’s survey

Teacher can enter the kahoot in the following URL: https://bit.ly/2Us2tGW

Other option is to create a new, using the following questions (correct answer is underlined):

1. Is a QR code scanner a sensor?
e Yes, it returns sensed information

e No, it is an app, the sensor is the camera

2. A QR code can contain as much text as desired

e No, it is limited

e Yes

3. Voice synthesis is relevant in Al because
e [t simplifies interaction with users
e |t shows information to the user in natural way

e All answers are correct

4. The tactile interaction with LCD screen in Al is
¢ Not really relevant, in the future the interaction will be through voice and image

e Important, because touching is natural for humans

5. The graphical design of the app screen is
* Not very relevant

e Important to simplify user interaction

e |t's the most important thing

6. The smartphone screen is an actuator?
e No, it is just part of the system

e Yes, because it performs an action, showing information

7. The orientation sensor of App Inventor uses
e The gyroscope
e The magnetometer

e Both

8. Speech recognition uses a specific phonetic dictionary for each language
e False, it works in any language

e True, to match the recorded sounds with existing words

erasmus.aiplus@udc.es 33

https://bit.ly/2Us2tGW

e Co-funded by the
Al FOR PRE-UNIVERSITY EDUCATION Erasmus+ Programme

of the European Union

Annex lll: Teacher rubrics

Partially Not yet
competent (2) competent (1)

Level (score) / Aspects to be evaluated |Expert (4)| Competent (3)

Adequate selection of information (QR code
creation, App Inventor user manual)

Time management (the student is aware of
deadlines and progress)

Design and construction of the solution: goal
understanding and reliability of the program

Creativity (autonomy and improvement of
the basic solution)

Teamwork (organization)

erasmus.aiplus@udc.es 34

Co-funded by the
Erasmus+ Programme
of the European Union

Al FOR PRE-UNIVERSITY EDUCATION

Annex IV: Student’s worksheet

This worksheet must be filled by each student during the completion of the TU, at the end of
each session:

GROUP REPORT TU 2 — ACTUATION AND PERCEPTION ‘
S

tudents

Challenge completed?

Time Enough | [1Yes [1No, It’s necessary

[IYes [INo

Contents
learned

Difficulties

Time Enough | v e T Challenge completed?
g es o, It’s necessary OYes LNo
Contents
learned
Difficulties

Actuators
used

Sensors
used

erasmus.aiplus@udc.es 35

