. . fests of difference between two conditions or
Testing for differences groups

b | This chapter deals with significance tests on typical data from a two-condition investigation such as
etween tWO Sam P €S . (hose depicted in Table 15.1. We first deal with so-called PARAMETRIC TESTS, or DISTRIBUTION
| EPENDENT TESTS, which are the various kinds of ¢ test. These are conducted on data that are at least
o interval Jevel. We then look at non-parametric equivalents — the Mann-Whitney and the Wilcoxon
ests which are used on data that have been ranked (that is, they are at ordinal level). We usually
only use these when the data have qualities that make a conclusion from a ¢ test unsafe. The sign
est is used on categorical related data.

This chapter introduces statistical significance tests for assessing the significance of differences
between two samples and also introduces calculation of effect size and power.
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e The related t test is used where data are in pairs, from a repeated measures or matched [ all cases we are dealing with the situation where you have two sets of data, typically scores for
pairs design. H, is that the mean of the population of difference means (mean of i .o conditions of an experiment or scores for two different groups of people. In order to select the
differences between each pair of values) is zero. appropriate test for your data you also need to decide whether they are related or unrelated (see

e The ¢ test for unrelated data (from independent samples) tests H, that the population of " Chapter 3). Data from matched pairs designs or from two measures of the same participant (repeated
differences between two means has a mean of zero; that is, it assumes that the two easures design) are related. Unrelated data occur where the two groups of participants providing
populations from which the two samples are drawn have identical means. scores consist of entirely different people; in other words, the two sets of scores to be tested come

e The single sample t is used to test the hypothesis that a single sample was drawn from a : from two completely different (independent) sources — an independent samples design. (See also
population with a certain mean; we usually want to show that this is unlikely and therefore Chapter 21 and pp. 279-80.) Though it will seem odd, data produced where a single participant
that the sample is from a different population. provides scores in two conditions of an experiment, several trials in each condition, are treated as

e ! tests are a type of parametric or distribution dependent test that depend on certain data uynrelated — see p. 76.
assumptions for their results to be reliable — homogeneity of variance, interval level data
and a normally shaped sampling distribution. : Parametric tests

e These tests are considered robust and more power efficient than their non-parametric 1
equivalents, which are also dealt with here — the Mann-Whitney for unrelated data and the The ¢ test for related data
Wilcoxon matched pairs for related data. These non-parametric tests use ranks of the data '
and are considered to have on average 95.5% of the power of their parametric equivalents. | When to use the related  test

e The sign test for related categorical data is described. ’ il Type of relationship tested Type of data required Design of study

[
SPSS prf)cedures iiar @il teststin the chagter ate pro_VIded' i ‘ Difference between two At least interval Within groups:

e Effect size is introduced as a concept concerned with the size of the effect that the study I conditions repeated
was investigating whether or not a significant effect was found; if significance was not | measures
found, and there is an effect, a Type Il error has occurred and it is stated that many : | matched pairs
researchers find the traditional structure of reliance on the significance test too conservative il Data assumptions: see required data assumptions on p. 363. The data in the example
with the fear that many effects are missed through Type Il error. ‘ below do not violate any of these assumptions.

e The likelihood of missing an effect, if it is there, is the probability  and power of a specific || Note: If your data do not approximately meet the data assumptions for the test
test is defined as 1 — 3. This is the probability of demonstrating a significant effect if an | &xplained on p. 363. you will need to transform your data or use a non-parametric or
effect really exists. Ways to increase power are discussed. i distribution free test such as the Wilcoxon matched pairs signed ranks test (see p. 368).

e Calculations are provided for effect size and power of ¢ tests.
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Data for a related r test

Take a look at the data in Table 15.1, which displays results from an experiment on the
improvement in memory recall produced by using imagery. Each participant has been tested i, .
the control condition (no specific instruction) and the imagery condition (where they were ggjq. ¥
form vivid images of each item). Hence it is a repeated measures or related design. The data come jy
pairs. Let’s just think step-by-step through what we expect to happen here, if there is an ‘effecp
from imagery. Because we argue that imagery should be a memory aid we would expect the
imagery scores to be higher than the control condition scores. Note that, in general, they are, bug

we cannot just say ‘it worked’; we need a significance test to demonstrate to the research woy|q
that the probability of these differences occurring, if the null hypothesis is true, is less than .05,

_lculating statistical significance tests

als chat, although we will go through the derivation of the ¢ test in detail, in order for you to be
. understand what is going on, I will also with each significance test, provide a standard

4la so that you can just submit your data to a test by simply following the steps of the

stion. These steps are given in special boxes after the explanation of each test. It is also likely,
are at a university, that you will use SPSS to do the analysis.

rting out on the related 7 test
mber that every inferential statistical test is a test of a null hypothesis. We want to calculate
fbbabiht}’ of our result occurring if nothing is really going on. It might help here, then, to think
what kind of results we’d expect if there is no effect — imagery does not help memory.

Number of words recalled in: ' at the difference between each person’s two scores we will see whether they improved in the
loo. 14 , Yy mp

condition or got worse. If the null hypothesis is true then people don’t generally improve

Participant number _Imagery condition () _ Control condition () Difference & all these differences should be close to zero. However, our research argument is that most
d 22 e should improve. In turn this means that differences (imagery score minus control score,
. 1 as d in Table 15.1 should generally be positive. The larger they are, if positive, the better for
1 ° : 0 o research hypothesis. This is a directional approach. In a non-directional approach we would
2 15 10 5 25 imply be saying that the differences should go in one direction, without specifying which.
3 13 7 6 36 3 . .
he null hypothesis in the related 7 test
4 14 8 6 36 | . . . .
The null hypothesis here is that the two samples of scores come from populations with the same
i 12 8 4 16 However, since this is a related design, we can state the null hypothesis in terms of the
6 16 12 4 16 nce values. If there is no imagery effect then the differences should all centre round zero and
atively small — only the result of random error. Our null hypothesis, then, can be re-stated: the
7 14 10 4 16 Y B % )
3 15 10 5 )5 population of differences has a mean of zero (Figure 15.1). We can write this as:
9 18 11 7 49 =0
10 17 9 8 64 Where 4, is the mean of the population of differences.
15 12 8 4 16
12 7 8 -1 1
13 15 8 7 49
X =13.38 %, 58.85 >d =59 >d? = 349
s; = 3.52 5s,51.68 (Zd)? = 3481

Mean of differences (‘difference mean’) d = 4.54
Standard deviation of differences s, = 2.60

Table 15.1 Number of words correctly recalled under imagery and control recall conditions (columns [ and C) and

statistics required to calculate related ¢

«~0-
Negative differences Positive differences

‘Bure |5, Hypothetical distribution of differences under H,
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Testing the null hypothesis

Think of the population of difference values as like the barrel of screws from the last chapter. Th
set of differences shown in the ‘d’ column of Table 15.1 is a sample of score differences drawn ]
randomly from this population and it has a mean of 4.54 (see the bottom of the 4 column). Thj,
mean of differences is known as a DIFFERENCE MEAN. Hence to test for significance we need to knoyy
the probability that a sample of 13 differences with a difference mean as large as, or larger thay,
4.54 would be drawn at random from the population in Figure 15.1, which has a mean of zeto,

What would be handy would be to know how other samples of difference values would be
arranged. If, under Hy, the underlying population of differences has a mean of zero then sampleg
taken randomly from it should all a/so have means close to zero. They would differ a bit from zey,
through sampling error, sometimes positive, sometimes negative, sometimes large, mostly small.
What would happen if we kept on taking samples of 13 differences from this population? What
kind of distribution of difference means would we get? If we knew this, then we could compare gy
difference mean of 4.54 with this distribution and see how unlikely ours would be to occur. Punnjly:'
enough, we have already encountered this concept of sampling over and over again in a previous
chapter. In Chapter 13 we met the concept of a sampling distribution. You might like to re-read the
appropriate section of that chapter in order to refamiliarise yourself with the idea.

Figure 15.2 shows the kind of distribution we might obtain if we were to dip into the population of |

close-to-zero differences taking samples of 13 many times over and recording the difference mean
each time. It is called a sampling distribution of difference means. Note that it is much narrower than
the distribution of differences because it is composed of samples of differences taken 13 at a time.
The means will not vary as much around zero as the individual differences do.

0O +1se

Figure 15.2 Sampling distribution of difference means under H),

If we knew the statistical properties of this distribution we would be able to say whether our
difference mean was a much-to-be-expected one or an extreme one. Trouble is, we don’t have
those properties ... or don’t we? We need the mean and standard deviation of the sampling
distribution because we just need to know how many standard deviations our difference mean is

differ

Popu[ation mean is an ‘error’.

sta

o the mean. Well we know the mean. We have already said that if the null hypothesis is true,
| 0 . .

e difference means will centre around zero. But what about the standard deviation? Well, on
316 we saw that statisticians have a formula for estimating the standard deviation of a sampling

Jjstribution using the sample that you have drawn. Don'’t forget, though, that the standard
dzqiation is called the standard error here. This is because each sample, drawn randomly under Hy,
-ctors from the mean of zero only because of sampling error. Each deviation of a sample from the

.'ITO estimate the standard error of the sampling distribution shown in Figure 15.2 then, we use the
entral limit theorem using standard deviation of the differences (s,), which gives us

s 226 o

S£’=\/’ﬁ— \[1’8

Now we can just ask ‘How many standard errors is our difference mean away from the

hypothetical difference mean of zero?” We can get this by dividing our difference mean by the

ndard error: 4.54/0.721 which gives us 6.297. This value is known as a ¢ value.

5o our difference mean, if it was sampled at random from all difference means, would be 6.297
standard errors away from the population mean of zero. Is this a long way, making it a very

unlikely occurrence? In Chapter 13, we learned that the number of standard deviations a score is
from the mean is a z value (see p. 312 and a z value of over 6 is ever such a long way from the

mean on a normal distribution. We might be tempted just to look up our z table as we did in
Chapter xx and find the probability of a z that large occurring. There is just one little snag with

this. The distribution of ¢ is not normal in shape unless N is very large (e.g. 120 or more) when f can
indeed be treated as a normal z value. The lower the value of N, though, the more the distribution
of t would be broader than a normal distribution.

For the theory and mathematical tables associated with ¢ distributions, and the # tests, we are

indebted to William Gossett, who worked for the Guinness organisation. Guinness, at the time he
did his stuff, did not permit its workers to publish findings connected with company work. Hence

.~ he published under the pseudonym of ‘Student’ and the distribution statistic is known, therefore, as

Student’s ¢. As a result of his work, however, we can consult ¢ tables and find out whether our
obtained value for ¢ exceeds the critical value contained in the table.

Consulting critical value tables

We want to know if the probability of obtaining a ¢ value of 6.297 is less than a in order to be able
to claim our difference between means as significant. We therefore go to the Appendix where we
find Table 3 containing critical values for ¢ In order to use this table we need to know a few things.

* First, we need to decide what level of a is appropriate. Usually this is .05 and you should
always use this value to start with.

* Next, we have to decide whether we are conducting a one- or two-tailed test. As explained at
the end of Chapter 14 it is best to use two-tailed tests and hope that your effect is large enough
to show significance with the design you are using.
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e Finally, we need to know our degrees of freedom (df). This term was introduced in Chapter xx I3
is the number of items in our sample that are free to vary, given that we know their mean. I wal
knew the mean of the differences but no individual values for d, we could enter any values w,
liked up to the 12th value but the 13th would then be fixed in order to make the mean what j;
actually is. Here we have 183 differences so 12 are free to vary and df = 12. The Procedure fo,
each significance test will provide a simple formula for calculating df where needed.

Analysis of our result for 1 — effect size and power
Now we are ready to enter Table x appropriately. We see that for a two-tailed test with a at .05

and with 12 df, the critical value for ¢ is 2.179 and our value of 6.297 easily beats that. In fact it afgy

beats the value for p < .01 over to the right. We said in the last chapter that a result significant with

p < .01 is not automatically ‘better’ than one where p is <.05. It all depends on sample size, effect

size and power. Effect size is an estimate of the size of effect we appear to have demonstrated. Powe,
is the probability of not making a Type II error. If we have low power, then a real existing effect
might not show as significant. This issue is discussed more fully later on in this chapter but do be
aware that nowadays reports of effect size, along with significance, are becoming more common
and may be expected.

Whatever the objections of the statisticians, psychological researchers would tend to report this
difference as ‘highly significant’ and to give the p < .01 value. Certainly, based on our sample
results, we can confidently reject the null hypothesis (that there is no population difference) and
argue that the use of imagery in this experiment appears to improve memory recall for words.
However, we should also report on the estimated size of the effect (see p. 385).

Formula for calculation of related ¢

(1) t= E;"F or (2) t= Zd
\/NZd?—(Zd)Z
N—-1

Equation (1) is just a slight rearrangement of what we did just above when we divided the
difference mean by the estimated standard error of its sampling distribution. This one is the easier

calculation if you have a simple statistical calculator that will give you standard deviations. Here aré

the calculation steps for equation (2) where you only need the differences themselves and N. SPSS
procedures are given on p. 379.

Hand calculation of related ¢

-""‘-—-__
procedure
—

4 Find the mean for each condition

Calculation/result of steps

From Table 15.1 x;, = 13.38 J?c = 8.85

2 Arrange columns so that condition with higher Column | before column C in Table 15.1
mean is to the left of the other condition; this is to

make subtraction easier.

Subtract each score C from score | See ‘d’ column in Table 15.1

3
4 Square each d See ‘d? column in Table 15.1
5 Total all d (2d) and all @2 (Zd?) >d =59 3d? = 349 (see Table 15.1)
6 Square 2d to get (Zd)? Note: This is not (Zd)? = 59 x 59 = 3481
the same as 2d2 - be careful to distinguish between
these two terms. (Xd)? says add the ds then square
the result. 2d? says square each d then add
the results.
7 Find N x 2d? 13 x 349 = 4537
8 Subtract (Zd)? from the result of step 7 4537-3481 = 1056
9 Divide the result of step 8 by N—1 1056/12 = 88
10 Find the square root of step 9 {88 = 9.38
11 Divide 2d by the result of step 10 to give ¢ t = 59/9.38 = 6.29
12 Find df * In a related design df = N—1 N-1=12

For 12 df t must be > 3.055 (two-tailed) for
significance with p <.01 our obtained ¢ is
greater than 3.055, hence the difference is
highly significant and we reject H,.

13 Check ¢ for significance in critical value table,
finding the highest table value of ¢ that our obtained
t is greater than, and make significance decision.

* Degrees of freedom: see explanation of this
concept on p. 273.

. Reporting results of significance tests — what you should actually write

Research psychologists generally employ the conventions laid down by the American Psychological

Association (APA) in reporting the results of statistical analysis. You will probably be asked to

follow this format in presenting your results section where your assignment is a scientific report of
a quantitative psychological investigation. Consequently, after we have looked at the analysis of
each test from now on, the APA format for reporting will be given. Most courses will not ask you
to report the estimated size of your effect (see p. 385) or confidence limits (see p. 316) but some do,
50 this information has been included. If you are not asked to report these values then just ignore

the last sentence below (before the note) and in future results report examples.
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Reporting results of a related ¢ test

=
The mean number of words recalled in the imagery condition (M = 13.38, SD = 3.52) was higher than the

mean for the control condition (M = 8.85, SD = 1.68) resulting in a mean increase (M = 4.54, SD = 2.6)
in the number of words recalled per participant. This increase was statistically significant, ¢ (12) = 6.29,
p < .001, two-tailed. The mean difference (mean difference = 4.54, 95% CI:2.97 t0 6.1 1) was large

(Cohen's d = 2.638).
Note: If this result were not significant do NOT say it was ‘insignificant’. Write:

* . This increase was not significant, ¢ (12) = 1.477, p = .165’'
(or you could write ‘ns’ or ‘p > .05")

The ¢ test for unrelated data

When to use the unrelated r test

Type of relationship tested Type of data required Design of study

Between groups;
Independent samples

Difference between two At least interval
conditions or groups

Data assumptions: see required data assumptions on p. 363. The data in the example
below do not violate any of these assumptions.

Note: if your data do not approximately meet the data assumptions for the test
explained on p. 363. you will need to transform your data (if skewed) or select the
appropriate line in SPSS. The alternative is to use a non-parametric or distribution free

test such as the MANN-WHITNEY U TEST — see p. 371.

The reasoning for the unrelated  test is similar to that for the related ¢, the difference being only
that the two samples of data have come from independent sources; that is, they are not pairs of
scores from the same person or from matched participants. Typically we might have scores in two
experimental conditions where each participant has been tested in one condition only. Another
common source of data for the unrelated t test would be scores on a psychological measure from
two different groups of people, e.g. reading scores for dyslexic and non-dyslexic students.
Differences between groups of males and females would be unrelated (unless they are brothers and

sisters!).

Data for an unrelated 7 test

Take a look at the data in Table 15.2 where participants have been divided into two groups, those
above the median on a measure of disturbed sleep and those below this median. It was proposed
that participants with a higher level of disturbed sleep would have higher anxiety levels than
participants whose sleep was less disturbed. This does appear to be the case; the mean anxiety
score for the higher sleep disturbance group is 12.4 (h = high disturbed sleep) whereas the mean for

the lower sleep disturbance (I) group is 10.1 However, we need to know whether this difference
petween means is significant or not.

| Anxiety scores for:

—

participants below median on

B participants above median on
disturbed sleep {}

disturbed sieep (h)

' score x, (N = 10) S5y Score x, (N = 11) xP
| I =

1 14 196 8 64
e 11 121 10 100
| : 9 81 9 81
' 12 144 11 121
¥ 13 169 9 81
| 15 225 11 121
1 13 169 8 64
11 121 12 144
17 289 1 121
9 81 13 169
9 81

; x, =124 x, =111
. (x)?=15376  3x =159 (Zx)? = 12321 Sxp = 1147

X, = 12.4 %, =10.1
5, =255 s;=1.64

Table 15.2 Anxiety scores for high and low sleep-disturbed participants

The null hypothesis for the unrelated 7 test

The null hypothesis here is that the two populations from which our two samples have been
randomly drawn have equal means. We can write this as:

Testing the null hypothesis

We can think of our two samples of anxiety scores here as like the two samples of screws taken
from the two different barrels we encountered in Chapter 14. Because the two samples of scores
are independent (from two different sets of people) we cannot, as in the related ¢ test, look at pairs
of scores and find the difference for each participant. However, what we can do is consider what
would happen if we took two samples from two identical barrels at random, many times over, and
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each time recorded the difference between the two sample means. What we would obtain, if we
plotted these differences each time, is a distribution looking much like that in Figure 15.3.

Plot of x -%; taken many times;
differences expected to centre
around zero under H,,

0 +lse

Figure 15.3 Sampling distribution of differences between two sample means

Under H,, if the two underlying population means are identical, then the mean of this sampling
distribution will be zero. That is, if we take two samples from the same population many times
over, sometimes the difference between these two means will be positive and sometimes negative;
sometimes it will be large but mostly it will be small. Under the laws of random selection the
distribution of differences will look like that in Figure 15.3. What we want to know, then, is how
far away from zero on this distribution does our obtained difference between two means fall? If we
know this we can easily find the probability of our difference occurring under H,.

Again, we need the properties of the sampling distribution of differences between two means. We
know its mean is zero so what will be its standard error? Well, unfortunately this is not as easy a
question to answer as it was for the related ¢ test. In keeping with the philosophy that psychology
students need only understand the basic principles of statistics rather than appreciate the finer
points of derivation, I will simply explain what the equation does rather than produce a
comprehensive explanation. Remember that all we want to do is to estimate where our obtained
difference between two means falls on the distribution expected under H, and shown in Figure
15.3. To do this, as for a z value, we divide the difference by the standard error of the distribution.
This answers the question ‘How many standard errors is our obtained difference from zero?’ In the
related f test we used the central limit theorem to estimate easily the population variance from the
sample variance. Trouble is, on this occasion we have fwo variances from two samples. What we do
in the unrelated ¢ test is estimate the variance of the distribution shown in Figure 15.3 from the
POOLED VARIANCE of the two samples. Now, if you can bear it, take a peek at equation 3 below, but
please do not panic! Yes, it is nasty, but it involves no more arithmetic than can be done on the

simplest of calculators — there’s just a lot of it!

The nasty bit on the bottom is the pooled variance used in the estimate of standard error of the
sampling distribution of differences between two means (i.e. the standard deviation in Figure 15.3)-

On top of the nasty equation below, then, is our obtained difference between two means. Below is
the estimated standard error. The equation will give us f, which will be the number of sta.ndard
errors we estimate our difference to be from the difference of zero expected under the null
hypothesis. This estimate takes into account the fact that sample sizes may be different.

Ixa - xbl

b

L Cxy o,
R M e )|

WN,+N,—2)
By-hand calculation of unrelated ¢

Na + Nb}
Na Nb

Obviously, equation (3) looks pretty complex but in fact it just involves a lot of basic steps with the
emphasis on 4 lot! If you want to calculate ¢ by hand, the following procedure box will take you
through these steps. Computer packages like SPSS will of course whisk you through it in a jiffy

but you won't have the satisfaction of cracking this monster! SPSS procedures appear on p. 381. -

Please note that, from the general equation above, in this example 4 has been substituted by the 4
or high sleep deprivation scores, whereas b is substituted by the / or low sleep deprivation scores.

Procedure

Calculation/result of steps
See Table 15.2 for all summary statistics

1 Add the scores in the first group

2 Add all the squares of scores in the first group

3 Square the result of step 1; always be careful
here to distinguish between 2x,? and (Zx,)?

4 Divide the result of step 3 by N,
5 Subtract result of step 4 from result of step 2

6 Steps 6-8: Repeat steps 1 to 3 on the scores in
the second group

9 Divide the result of step 8 by N,
10 Subtract result of step 9 from result of step 7

~ 11 Add the results of steps 5 and 10

12 Divide the result of step 11 by N;, + N;— 2

N, + N,

14 Fi | N
Find the square root of the result in step 13

13 Multiply the result of step 12 by:

15 Find the difference between the two means

2x, =124
Zx,2 = 1596
(Zx,)? = 15376

15376 = 10 = 1537.6
1596 — 1537.6 = 58.4
Step 6: 2x; = 111

Step 7: Zx? = 1147

Step 8: (2x))? = 12321
12321 =+ 11 =1120.1
1147 - 1120.1 = 26.9
58.4 + 26.9 = 85.3
85.3(10 + 11-2) =4.49
4.49 =+ 21/110 = 0.85

v 0.85 = 0.92

12.4-10.1 =23

(xh - X )
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16 Divide the result of step 15 by the result of t=23+092=25

step 14 to give ¢

17 Find degrees of freedom (df) where 1M0+11-2=19

df = Ny + N;- 2

18 Consult Appendix Table 3 and decide upon
significance

For a two-tailed test with df = 19, ¢t must be >
2.093 for significance with p < .05; hence the
difference between means here is significant.

We can reject the null hypothesis that people with high sleep disturbance do not differ from people
with low sleep disturbance on anxiety. It remains open to question, since this was ot an experimen,
whether disturbed sleep is a cause of anxiety or whether anxiety causes sleep disturbance. The issues
of effect size and power should also be considered in reporting this result (p. 385).

Reporting results of an unrelated ¢ test

High sleep-disturbance participants produced higher anxiety scores (M = 12.4, SD = 2.55) than did the
low sleep-disturbance participants (4 = 10.1, SD = 1.64). The difference between means was significant,
t(19) = 2.5, p < .05, two-tailed.

The difference between means (difference = 2.3, 95% Cl: 0.37 to 4.25) was large (Cohen’s d = 1.08)

The single sample ¢ test
Data requirements: Interval level data and normal distribution

The tests so far covered are the most common type of ¢ tests, those where we do not know the
features of the appropriate underlying population and where we are testing the difference between
two samples. Usually we have a second sample, which is a control group, because we need to make
a comparison with what would happen if no treatment were applied. In some cases, however, we
do know the features of a population, in which case our significance testing is made easier. In this
case we do not need a control group because we already know the population mean for the
condition in which no specific treatment is applied.

Let’s return to the spinach-eating example in Chapter 13. There we found that the mean reading
score for a population of eight-year-olds was 40, with a standard deviation of 10. We said there that
significance tests would normally be carried out on a sample of children’s scores, not just one.
Suppose we identified a sample of 20 spinach-eating children whose combined average reading
score was 43 with a standard deviation of 6. This is in favour of our hypothesis that spinach eating
enhances reading. However, we need to test our difference for significance.

The null hypothesis for a single sample ¢ test

In a single sample ¢ test we know (or can argue for) the population mean for the variable under
investigation. In the spinach case we assume: Hy: 4 = 40

What we don’t know is what the sampling distribution for samples of 20 children at a time would
ook like, S0 We can again use the central limit theorem to estimate this for us. The standard error
of the sampling distribution will be

s 6
- =—=134
§e = W m
Our sample mean is 3 points away from the assumed mean of 40 under H (which assumes that
our spinach-eating kids have been randomly sampled from the normal reading population). How
many standard errors is this from 40? We must divide the difference between our mean and 40 by

- the standard error. This will be our obtained value for ¢, so let’s find it:

df here, as usual, are one fewer than the number of data points we have, so df = 19. From Appendix
Table 3, t must be 2 2.093 for significance with p < .05 (two-tailed). Hence this difference is
significant and we may reject the null hypothesis that spinach-eating children do not differ from
other children on reading (I do stress this is fictitious; don’t rush to the greengrocer’s!). The issue of
effect size should also be considered in reporting this result (see p. 385).

Reporting the result of a single sample 7 test

The spinach-eating group produced higher reading scores (M = 43, SD = 6) than the known mean for the
normal population (& = 40, SD = 10). This difference was significant, z (19) = 2.23, p < .05.

The difference between the sample mean and the population mean (3) was medium (95% Cl: 0.188 to 5.812.
Cohen’s d = 0.5).

(Note: The data set for these calculations is provided on the companion website at:
www.hodderplus.com/psychology/

Data assumptions for ¢ tests

The ¢ tests are often referred to as being in a class known as parametric tests. Actually, they are more
appropriately known as disttibution dependent tests and this is because, as we saw above, they make
estimations of underlying distributions. These estimations will be seriously distorted if the data we
have gathered do not conform to certain criteria. In turn, any inference we make from our data
may be suspect and we may need to rethink the analysis of our data in order to be more confident
of the decision we make about them. There are three basic considerations about the data for our
dependent variable that we must make, and these are described below.

1 The level of measurement must be at interval level

This is a much-debated point but there is an easy rule of thumb. As we saw in Chapter 11,
nterval-level data have equal amounts for equal measures on the scale. Hence, distance (which is

'_:aISo a ratio measure) increases in equal amounts for every increase in unit. We know that this can
'hardly be true for many psychological measures such as intelligence, extroversion, and so on,
:-although it is the psychometrist’s dream to create such scales. However, if a scale has been
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select Sqrt LOG10 or LN after clicking Arithmetic on the right-hand side (scroll down
alphabetica]ly) and click that upwards into the box labelled Numeric Expression. Place the cursor
petween the two brackets in the new expression and double-click the variable to be logged (e.g. hits).
[t should now appear between the two bracket signs (e.g. you should see LN(hits), and you're ready.
Click OK and a new logged variable will appear in your datasheet; check that its skew is not more
than twice its standard error and use this instead of hits as the dependent variable in conducting your
; test. If this doesn’t work try another transformation. Note that, although you use this transformed
cariable in your analysis (e.g. the ¢ test), having explained to your reader that this is what you have
Jone, you should from then on refer to hits and not loghits when discussing your findings.

standardised (see p. 201) it is usually safe to treat its scores as interval-level data. Scores on a
memory test Or errors on some other cognitive task represent sensible ratios — six words recalled i
twice as good as three words recalled — but we would not claim therefore that Harry with six hag
twice as good a memory overall as Ron. We are only measuring performance on an isolated task.
Hence one need not get into this kind of metaphysical argument in order to be satisfied that thege
kinds of measures produce data we can safely treat as being at interval level.

Where we run into difficulty is with invented scales that rely on human judgement. Typically, we
might ask people to ‘rate your level of confidence on a scale of 1 (= not at all confident) to 10 (=
highly confident)’. Here we know that your 8 might be my 6 and we have no independent way of
knowing that people using this scale are separating themselves from others by equal amounts.
When using this kind of scale to produce data which we then want to test for significance there are
two main options: (1) subject the data to normality checks as described below and in more

advanced textbooks, transforming the data if necessary, or (2) choose one of the non-parametric tests
to be described in the next section.

3 Homogeneity of variance

For two condition tests, this check need only be made where the design is unrelated and the sizes of
N, and Np are very different, e.g. 7 and 23. Homogeneity of variance requires that the variances in
the two populations are equal and we check this by showing that the two sample variances are not
significantly different. The reason for this lies in the estimation of pooled variance in the formula on
p. 360. The null hypothesis assumes that both samples are drawn from similar distributions. Each
individual sample variance is an estimate of the underlying population variance and we average
these two to get a better estimate. This averaging makes no sense if the variances are very different.

2 Data from a normal distribution

Our data should have been drawn from an underlying normal distribution. For a standardised
psychological measure this should be true since this is what is created when the test is first
developed. However, you may be drawing data from a somewhat different population from that on
which the test was standardised. For any data set it is worth checking that there is not too large a 1 If using SPSS, you will automatically be given the result of a Levene’s test when you conduct an
skew and that the data are distributed as would be expected if drawn from a normal distribution independent samples 1 test. You just need to note that the significance value for this is not under
(see p. 308). Your data are not normally distributed if they do not fit the criteria outlined on 05; if it is, the variances are not homogenous. If this happens then you just have to consult the
p. 319. In addition you can inspect several kinds of plot using SPSS, especially the Normal Q-Q line ‘Equal variances not assumed’ in the t test results table.

plots, as described in Pallant (2007).

What do you do if you find the data really are a long way out from normal? Chapter 13 tells us that
skew is too much when the value for skew is twice its standard error. There are two common

solutions, the first of which is simply to use a non-parametric test (see below). The other is to stay
with the 7 test and use, instead of actual scores, a TRANSFORMATION of these scores. This sounds like a
glorious cheat but in fact we can ‘normalise’ our data this way and then legitimately carry on with
the ¢ test, so long as the skew is now acceptable. Among the transformations you can perform are:

To test for homogeneity of variance you can do the following:

Use a rough guide — if you cannot use these methods you can at least decide that a f test is
unsafe if one variance is more than four times the value of the other (for small N, i.e. 10 or
fewer) or more than twice the value for larger N.

Consult more advanced texts — such as Howell (2001) — for Levene’s and O’Brien’s tests,
calculated by hand.

If you do not think that the homogeneity of variance assumption is satisfied you can decide to use
a non-parametric test, probably the Mann-Whitney, which is described later in this chapter.
Alternatively you can add participants to the condition with lower N until numbers in each
condition are equal (of course, you don’t then have random allocation).

® square
e square root

e log (to base 10 or other bases).
Why not wing it? — The robustness of ¢ tests — the alternatives and their

Be careful if you use square root since the square root of zero is an impossible calculation and SPSS .
power efficiency

will exclude all scores of zero from the analysis. The answer is to first add 1 to every score. Getting the
log of each score can be done quite easily using a computer spreadsheet (such as Microsoft Excel or
SPSS) or using a simple scientific calculator. You can use log10, log, (as LN does in the SPSS
instructions below), or any other log base, so long as it has the effect of normalising your data
(reducing the skew).

A certain amount of leeway is tolerated with these assumptions. If you are in a position where you
wish to use a ¢ test but have violated one of the conditions a bit, then you can draw your reader’s
attention to this but also hope that the significance level is so high (i.e. p is so low) that it is likely
that you are still making the correct decision about the existence of the effect you are investigating.
For this reason the  tests are called ‘robust’ (you can violate the assumptions a bit and still trust

In SPSS the commands are: transform/compute. You see a box, top left, labelled Target Variable
' your result). However, if you really are in doubt there is simply no big problem with switching to

which asks you to name a new variable that will be the log of your raw scores (e.g. loghits). You the
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one of the NON-PARAMETRIC or DISTRIBUTION-FREE equivalent tests, which we will move on to below
(and they are a lot easier to calculate by hand). These tests (usually the Mann-Whitney U and the
Wilcoxon T tests) will give you the same significance decision as the t test on the large majority of
occasions. The reason they don’t always do so is because they deal with less of the information in
the data than do interval-level tests. The non-parametric tests reduce data to ordinal level thus
Josing the distance between individual positions of scores (see p. 255).

Because rank tests do not always detect significance when a ¢ test would, they are sometimes
described as being less POWER EFFICIENT. Power efficiency is determined by comparing one type of
test with another in terms of their ability to avoid Type II errors. With rank tests, then, we are
somewhat more likely to retain H, when it is false than with the # tests. However, if the research
study is well designed, with appropriate and large enough samples, an effect should be detected
with either test. The issue of statistical power is dealt with later in this chapter.

| What precautions need to be taken before carrying out a ¢ test on each of the following two sets of

data:
(@ 17 23 (b) |7 23
|8 9 18 I
18 31 18 24
16 45  (unrelated data) 16 29 (related data)
16 12 19
18 15 16
|7
6

2 Brushing caution aside, calculate the ¢ values for the data in la and Ib above any way you like.

' 3 A report claims that a #-value of 2.85 is significant (p < .01) when the number of people in a
repeated measures design was | 1. Could the hypothesis tested have been non-directional?

4 At what level, if any, are the following values of z significant? The last two columns are for you to fill
in. Don't forget to think about degrees of freedom.

Design of One- or Reject null
t = N study two-tailed p< hypothesis?
a) 1.750 16 related 2
b) 2.88 20 unrelated 2
c) 1.70 26 unrelated 2
d) 5.1 10 unrelated 1
e) 2.09 16 related 2
1) 2.76 30 related 2

©

5 ng groups of children are observed for the number of times they make a generous response
during 'one day. The researcher wishes to conduct a ¢ test for differences between the two groups
on their ‘generosity response score’. A rough grouping of the data shows this distribution of scores:

Number of generous responses

_ 0-3 4-6 7-9 10-12 13-15 16-19 20-22
Group

A 2 16 24 3 1 0 1

B 5 18 19 4 5 1 3

(a) Why does the researcher's colleague advise that a ¢ test on the raw data might be
inappropriate?

(b) What are the options for the researcher?

Variances not at all similar; unrelated design and very different sample numbers. If using SPSS use
unequal variances line’ (see p. 382) or carry out the non-parametric equivalent.

(b) Lack of homogeneity of variance but related design. Therefore, safe to carry on with ¢.
2 (a) t(10)=206;(b) ¢t (5) =157
3 No. df = 10. Critical value (two-tailed) at p < .01 = 3.169
4 (a) NS, keep NH
(b) Ol reject NH
(©) NS, keep NH
d) .005, reject NH
e) NS, keep NH
f) .0l reject NH

TN TN TN

5

~

a) Distribut.ions are skewed. As samples are large, the whole population may well be skewed too
and this is contrary to normal distribution assumption.

(b) Try to get rid of skew by transformation of the data or switch to a Mann-Whitney.
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Non-parametric tests of difference

We have seen that there are some restrictions on the type of data that are suitable for a safe
significance assessment using ¢ tests. Sometimes your data just won'’t be suitable. You may have 5
scale that certainly isn’t interval — it does not have equal intervals for equal amounts of the variable
measured. Typical here are those invented assessment scales that ask you to ‘Assess ... on a scale
from 1 to 10...”. You may have severely skewed data that won’t go away with a transformation.
This isn’t as big a problem as it might seem. You can use a non-parametric test (usually easier to
calculate if doing it by hand) and still get the significant result that a ¢ test would give. Non-
parametric tests are estimated to be 95% power efficient as compared with ¢ tests. That is, on 95
occasions out of 100 they will give you significance if the ¢ test does.

The Wilcoxon (T) matched pairs signed ranks test

When to use the Wilcoxon

Type of relationship tested Type of data required Design of study

Within groups:
Repeated
measures
Matched pairs

Difference between two conditions At least ordinal

Data assumptions: Data at least at ordinal level.
Note: When N is > 20 and/or if the Wilcoxon critical values table does not include your

size of N, please see p. 375

The Wilcoxon is one of two major tests used at the ordinal level for testing differences. It is used

with related data (from a repeated measures or matched pairs design). One initial word of warning:

the Wilcoxon statistic is T and this is very easy to confuse with the (little) ¢’ test we met in the
previous section. SPSS does not help by referring to ¢ as T! Just be aware of which test you are in
fact using. There is also a rarely encountered Wilcoxon’s rank sum test for unrelated samples.

Data for Wilcoxon’s T

Suppose we ask students to rate two methods of learning which they have experienced on two
different modules. Method A is a traditional lecture-based approach while method B is an active
assignment-based method. We might hypothesise that students would be very likely to prefer a
more active, involved approach. If you look at the data in Table 15.3 you’ll see that, for each
student, we know which they preferred by looking at the sign of the difference between their two
ratings (column C). If the sign is positive then their rating for Method B was higher than their
rating for Method A. In column D, the sizes of the differences have been ranked, ignoring the sign
of the difference. This converts the differences in column C into ordinal data. Just three students
prefer the lecture method to the assignment method, and this is shown by the fact that their
differences are negative.

Rating of Rating of Difference Rank of
traditional assignment- (B-A) difference
lecture based method
student (N = 15) A B C D
Griffiths 23 33 +10 12
Ashford 14 22 +8 9.5
woodlock 35 38 +3 3
Jamalzadeh 26 30 +4 5
Manku 28 31 +3 3
Masih 19 17 —2 1
Salisbury 42 42 0
Maman 30 25 —5 6
Quinliven 26 34 +8 9.5
Blay 31 24 —7 8
Harrison 18 21 +3
Ramakrishnan 25 46 +21 14
Apostolou 23 29 +6
Dingley 31 40 +9 11
Milloy 30 41 +11 13

Table 15.3 Student ratings of a lecture-based and an assignment-based module

It we are to convince ourselves and others that the preference for an assignment approach is real,
and that we can dismiss the idea that the ratings fluctuate only randomly, we need more positive
than negative differences. However, it would also be much more convincing if those negative
differences (i.e. the ‘unwanted’ ones) were small compared with the others. In a sense, if we were
arguing for the assessment-based method, we could say ‘Sure, there were a couple of people who
voted in the opposite direction, but not by much.’ The way we show that the unwanted differences
are not large is by looking not at the actual difference (as we did in the ¢ test) but at the ranks of the
differences. We want the negative ranks to be small. T is simply the smaller of the two sums of
ranks — the sum for the positive differences and the sum for the negative differences. If we have a
significant difference then T will be very small because differences that went in one of the two
possible directions are also very small.
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For any fixed value of N there is a fixed sum of ranks for the differences. In Table 15.3 there are 15
people. One of these does not have a difference since they rated both methods the same. For the
purposes of the Wilcoxon analysis we ignore any ties like this. Hence, the 14 remaining participants
must receive the ranks 1 to 14. These ranks add up to 105 (that’s 1 +2 + 3 + 4+5+6+7+8+9 4
10 + 11 + 12 + 13 + 14). We will have two sums of ranks, one for negative and one for positive
differences. Hence, these two sums must add to 105. This will be true whenever there are 14 data
pairs no matter what was measured on whatever scale. Ordinal data are just the ranks — the raw
scores are not used in calculations. If there is no difference between ratings of the two teaching
methods (for the ‘population’) then every time we sample 14 people’s pairs of ratings we should get
a T close to 52.5. T is the smaller sum of ranks but if there is no difference between the methods
then most of the time the two sums of ranks will be equal and T will be half of the total sum of
105. In other words, if we obtained a sampling distribution of Ts by taking 14 pairs of scores over
and over again, the mid-point of this distribution would be where T = 52.5.

The null hypothesis for the Wilcoxon matched pairs signed ranks tests

It is conventional to state the null hypothesis as the claim that the two populations from which
scores are sampled are identical. Most of the time this is more specifically that the two medians are
equal (not means because we are working at the ordinal level). ‘

Testing the null hypothesis

T values of around 52 and 53 will occur most frequently, then, if we persist with the drawing of 14
random score pairs. Values for T will range either side of this but very few will be close to zero or
to 105. In other words, we are sampling under H and we could work out how likely it is to get
any value for T. Fortunately, those who have gone before us have developed tables of critical
values. These will tell us what value of T will occur less than 5% of the time if the null hypothesis
is true. If our T is lower than or equal to the critical value, then the probability of our T occurring

under H ,is < .05.

By-hand calculation of Wilcoxon's (related) T

Procedure Calculation/result of steps

4 Cons_ult Appendix Table 5 to find the critical value
rngred; use N, which doesn’t include any zero
difference scores already discarded

Relevant line is N = 14

5 Using two-tailed test values, for significance T must
be less than or equal to the table value for a i.e.
usually p = .05

Critical value of T when p < .05 is 21; our
o_btained T is less than this, so the
difference is significant; we may reject H;
Note that the obtained T also equals the

critical value for p < .02 so we know that
p was in fact as low as .02

NOTE: In the ¢ test our value for ¢ had to be greater
than the crucial value; here T must be lower

————

Note:_ *Almost all writers tell you to ignore zero differences so you'll be in safe company if you do, and you can
certainly ignore _them when there are only two or three. However, with larger numbers, a small biés is ir:/curred and
Hays (1973) advises the following: with even numbers of zero differences, give each th'e average rank that all thenze
would get — they get the lowest ranks, before you move on to values of 1 and 2 so four zeros would get the ranks 1ros
2,3 ar\d 4., and each would receive the average of these which is 2.5. Arbitrarily give half of the zero score ranks a ’
negative sign. Do the same if there is an odd number of zeros, but randomly discard one of them first. This might
make some results significant that wouldn't otherwise be. Notice, this has no effect on our calculati . b bg

with one zero difference, the methods are the same. 1o ahove becatise

It appears that there is a real overall preference among students for the assignment-based teaching
method. Effect size and power should be considered (see p. 385).

Reporting the results of a Wilcoxon matched pairs signed ranks test

One §tgdent showed no preference for either method and this result was discarded from the analysis. The
remaining 14 students were rank ordered by the size of their preference for one teaching form over tl.'le other.
A Wilcoxon T was used to evaluate these differences. A significant preference was shown for the assignment.-
based method, T = 15, p < .05; the total of the ranks where students were in favour of the assignment-
based method was 90 and the total for the traditional method was 15.

The effect size was medium to large, 7 = .43 (see p. 393 for effect size calculation)

The Mann-Whitney U test

1 Find the difference between each pair of scores; it makes See Table 15.3 column C

things easier to subtract in the direction that differences
were expected to go or, anyway, smaller from larger

2 Rank the differences, ignoring their sign; see p. 253 for
ranking method; omit any zero differences from the
analysis™®

3 Find the sum of ranks of positive differences and the
sum of ranks of negative differences; the smaller of
theseis T

See Table 15.3 column D

Note we drop Salisbury from the analysis

Since the sum of ranks for negative
differences will obviously be smaller we
need only add these,

so:T=1+6+8 =15

|| Your size of N, please see p. 375.

When to use the Mann-Whitney

Type of reiationship tested Type of data required Design of study

Difference between two At least ordinal

congrnse Between groups:

Independent
samples

Data assumptions: Data at least at ordinal level.
Note: When N is > 20 and/or the Mann-Whitney critical values table does not include

S
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Data for the Mann-Whitney U test
In order to understand how the Mann-Whitney test works have a look at the data in Table 15.4.
Imagine that children’s tendency to stereotype according to traditional sex roles has been observed.

The children have been asked questions about several stories. The maximum score was 100,
indicating extreme stereotyping. Two groups were observed, one with mothers who had full-time

paid employment and one whose mothers did not work outside the home.

Stereotype scores for children whose mothers had:

Full-time jobs No job outside home

Score Points Score Points
17 9 19 6
32 7 63 0
39 6.5 78 0
27 8 29 4
58 6 39 1.5
25 8 59 0
31 7 77 0

81 0

68 0
Totals: 51.5 U, 11.5 U,

U is the lower of 51.5 and 11.5, so Uis11.5

Table 15.4 Stereotyping scores for children with employed and unemployed mothers

It looks as though the stereotyping scores for children of employed mothers are far lower than
those for the other group. It is true that there are two fewer employed than non-employed
mothers. However, this doesn’t matter and the statistical test will take this into account. Never
worry about slight disparities between participant numbers in two conditions (though itis a good
idea to plan on getting even numbers if you can). Certainly never use this as a critical point when
discussing a research study unless the disparity is very large. The statistical procedures reported in
this book all take into account such disparities and nevertheless calculate the value of p under Hy in

all cases.

The Mann-Whitney test, like the Wilcoxon, is based on rank order, though you will not need to do
any ranking in order to perform the test. Imagine that the values in columns 1 and 3 of Table 15.4
were the scores obtained by members of team A and team B respectively, each throwing three
darts at a dartboard. Because we are only working at ordinal level the information that 81 in the B
team is far higher than the highest score of 58 in the A group is not used. All we use is the

inform.at}on that 81 is better than the highest team A score; we don’t take into account how much
be}tlter it is. Vghat vljl/e do, in fact, is to find out, for each person in a group, how many people in the
other group beat that person’s score. We do this by allotti i i

i y allotting points according to i
o gp g to the following
o each time a score X is beaten by one in the other group award a point to score X
o each time a score X equals a score in the other group award % a point to score X

If you .IOC')k at columns 2 and 4 of Table 15.4 this has been done. The first score in the first i
17. This is beaten by every score in the other group so 17 is awarded 9 points. You'll see thgl:co'up ;
this (rather odd) scoring system the higher your points total the more people I.lave beaten e
score. The third score in the first group is 39. This is beaten only by the scores of 63, 78 5};0;; 81
and 68 in the other group, so 6 points are awarded. However 39 is also equalled by t,he Eifth] ,

in the seconc-i group so a half point is awarded here also, giving 39 a total of 6.5 pointsialto est(}:lc;e
We proceed in this way through both groups, although if it is obvious which group has theghighe'r

scores you need only award points for that group. The total of poin :
. ts f h
the lower of these two totals is the statistic U. i PHEAGH gleNp s fovind Bud

There is a simple rationale to this. Suppose each person in each group has played each person i

the. other group just once, each throwing the three darts. There will be 7 x 9 contests alEo etlr; .
giving 63. For each of these contests a point is awarded, either one to the winner or a % e;g h o h
case of a draw. This is precisely what we just did in awarding our points. Hence we mlzlst }Cla\:: e

awarded 63 points al . i
e points altogether, and you can tell this by adding the two values of U. We know, then,

N N,=U;+ U,

and - .
you can use this in future just to check you haven’t made an error.

The null hypothesis for the Mann-Whitney U test

: In general, H, is that the populations from which the two samples have been randomly selected are

identical. In most cases it is specifically that the two population medians are equal

Testing the null hypothesis

."gedﬁzibir?g tha};c pc’>1nts awarded here are like penalty points, if the members of team B are really
b aO e;’lts t ;y IL have very few points awarded against them and team A will amass a large
"-drawin ) 5 n 1e ot Zr and, the two team§ are equally matched, then each time they play it is like
b I‘C_’,I amples ulJ:;i er the null hypothesis. The most either team can get is 63 and the least zero.
i Vo Izve w?u expect 31 or 32 to occur most frequently (with equal team numbers) and
L Valu: UESUO (}{ to occur relat1\.zely less frequently. For each combination of N; and N, there will
My (o b WH ete, if our obt‘alne‘d value of U falls below this, the probability of the difference
e fg under {)) is < .05. This will be our critical value, then, and our statistical train spotters

of course devised tables for us to consult (see the Appendix, Table 6).
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By-hand calculation of Mann-Whitney U

Procedure Calculation/result of steps

1 For each score in each group give a point each See columns 2 and 4 of Table 15.4

time it is beaten by a score in the other group
and a % point for a tie; if one group obviously
has higher scores you need only do this for
that group

2 Add up the points for each group and find the
lower of two values; this value is U

In Table 15.4 we have U; = 51.5and U; = 11.5
(Check: Ny Ny = U + Uyt 7 x9 =515+ 115

— 63 so we have not made an error)

U=115

Critical value for N; = 9 and N, = 7 is 12

11.5 is less than 12 so we have a significant result
(just!) and may reject Hy.

We have support for the hypothesis that children of working mothers are less likely to use sex-role
stereotypes. Effect size and power should be considered (see p. 393).

3 Consult Table 6 for critical values with a
two-tailed test and « at .05

Reporting the results of a Mann-Whitney U test

The children’s stereotyping scores were each allocated points when they were exceeded by or equalled each
score in the other group. The lower points total was taken as a Mann-Whitney U value for N, =7 and N,
— 9. The results indicated lower stereotyping scores for the children of full-time employed mothers than for
the other children. This difference was significant, U = 11.5, p < .05, with 51.5 points for the employed
mother group and 11.5 for the non-employed mother group. The effect size was large, r = .53.

Note: Where the formula approach is used (see below), and scores are rank ordered, you would include the
rank totals for each group rather than the points total.

Formula for U

Most texts ask you to rank all the scores as one group then apply two formulae to find U, and U,.
The original procedure is that just described but statisticians like to encapsulate procedures in a
formula. Some argue that the points method is unwieldy for large N but my view would be that
the ranking method is even more frustrating and error prone for large numbers, where many ties
occur and where the student inevitably finds they have to restart at least once. Even with large
samples, if [ had to calculate by hand, I would always choose the points method. To calculate with
formulae, first, rank all 16 scores as one group. Then use the ranks in the following formulae:

N“(Na+1) N

N, (N, + 1)
U, = NN, + =2 R, BBt —

2

where R, is the sum of ranks for group A and R, is the sum for group B. Again you select the Jower
value of U, and U, as your observed U.

szNaNb+ R,

a a

Non-parametric tests and z values — Effect size and large N

Both U and T can be converted to a z value. This is particularl ful i ; :
we will do this on p. 395. P y useful in calculating effect sizes and

It is also useful when N is large and the critical values only go up to a modest sample size of 20 or
25. The value of z has to be large enough to cut off less than the final 5% of the normal distribution
at the predicted end (one-tailed tests) or less than 2.5% at either end (two-tailed tests). From the
normal distribution table in the Appendix, Table 2 I hope you'll agree that a z score of'l 96 is the
critical value for a two-tailed test and that 1.65 is the critical value for a one-tailed test \;vh i
05. The relevant formulae are: e

Mann-Whitney

U— NaNf)

2
z= where Nis N, + N,

\/ NNy NM-N B-t

N (N-1) 12 12
t.accounts for tied scores. Each time you find a tied value in your data set you count up how many
times the value occurs and this value is t. Remember though that you have to do this for each value

that is tied and add up the results. For instance, for the data in Table 15.2 the score 11 appears five
-t

times so ¢ = 5 and you then put this into the

formula and record your result. Then you do the

same again for 9, which also occurs five times, 12 which appears twice, 13 which appears three

times and 8 v&ghich appears twice. Finally you add the results of these five calculations. If there are

no ties then

is just ignored.

Wilcoxon signed ranks T

. N+ -4T
7= where the T is the observed Wilcoxon’s T
\/ ON (N+1) @N+1)
3

The (binomial) sign test for related data (S)

When to use the binomial sign test

Type of relationship tested Type of data required Design of study

Difference between two
conditions

In categorical form — may be
reduced from interval or Repeated measures
ordinal level Matched pairs

Eata assumptions: Measures of the dependent variable have two equally likely values
nder H,, e.g. negative or positive, correct or incorrect and so on.

Within groups:

—
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Data for the sign test

The sign test works on a very simple kind of categorical data. When we have interval-like data on
each participant taken under two related conditions we may feel that the difference between the two
values cannot be taken as a meaningful interval measure. For instance, if you rate two modules on a
scale of 1 to 10, giving one 8 and the other 4, we cannot claim that the difference of 4 is an interval
measure. However, what we can say pretty confidently is that you preferred the first module to the
second. We can take as data the sign of the difference. Often, all we have is one of two possible

outcomes.

Suppose that, in order to assess the effectiveness of therapy, a psychotherapist investigates whether
or not, after three months of involvement, clients feel better about themselves or worse. If therapy
improves people’s evaluation of themselves then we would expect clients’ self-image ratings to be
higher after three months’ therapy than they were before.

Take a look at the data in Table 15.5 showing clients’ self-image ratings before and after three
months’ therapy on a scale of 1-20, where a high value signifies a positive self-image. Here we
would expect the scores to be higher in column C than they are in column B as we do in the
related ¢ and Wilcoxon tests. Therefore we would expect positive differences in column D. Unlike
the ¢ and Wilcoxon tests, here we ignore the size or cank of each difference, and simply put the sign

Research Methods and Statistics in Psychology

(or direction) of each difference into column E. If the therapy is working, we would hope to obtain
a large number of positive signs and a small number of negative signs, if any. The SIGN TEST gives us
the probability of finding this number of negative signs (or fewer), given that the null hypothesis is
true. That is, it tells us how likely it is that such a large (or even larger) split between positive and
negative signs would be drawn ‘by chance’ under the null hypothesis where even splits are
expected. This is just what we looked at with the glove drawer problem in Chapter 14.
DATA
A B C D E
Self-image Self-image rating
Client rating before after 3 months’ Difference Sign of
therapy therapy (C-B) difference
a 3 7 4 +
b 12 18 6 +
c 9 5 -4 =
d 7 7 0
e 8 12 4
f 1 5 4
9 15 16 1
h 10 12 2
i 11 15 4
j 10 17 7

Table 15.5 Self-image scores before and after three months’ therapy

376

The null hypothesis in the binomial sign test

We aizszn;e that there are equal numbers of positive and negative signs in the ‘population’ we have
e —

S;mpo " rom — and we assume we have sampled from that population at random. This is exactl

the position we were in with the baby-sexing result on p. 331 and, in effect, we went through th};,

details of a sign test there. Here, we simpl
. ) ply present the ‘cookbook’ : .
5 rPa.get of thistlin ofi paired dhea. yP cookbook’ method of conducting a sign

procedure

=

Calculation on our data

1 Clalculate the differgnce between_columns B and C, Find difference between scores in columns B
always subtracting in the same direction. If a and C of Table 15.5. We expect column C

directional prediction has been made, i
, it makes scores to be high [
sense to take the expected smaller score from case. gher. Hence we take C-8 in each

the expected larger one. Enter difference in
column D.

2 Enter the sign of the difference in column E.
!_eave a blank where the difference is zero and
ignore these in the analysis.

3 Qount the number of times the less frequent
sign occurs. Call this S.

4 Consult Table 7 in the Appendix.
a) Find the line for N (the total number of signs
not including zeros).
b) Consult one- or two-tailed values.
5 Compare S with the critical value for the

significance level set. For significance, § must
be equal to or less than the critical value.

See column E of Table 15.5. N becomes 9
becagse the difference for client d is zero. This
case is dropped from any further analysis.

Negative signs occur less frequently, so § = 1

a) N=9 (see step 2, above).
b) We would be interested if the therapy made
people worse so stick with two-tailed test.

Our § is 1. The critical value under the column
headeq p < .05 (two-tailed) is 1. Therefore, our
result is not greater than the appropriate critical
value and meets the criteria for significance.

Ogr result is significant with p < .05. We may
reject the null hypothesis.

6 Make statement of significance

Reporting the result of a sign test

For i i i i
Wheer:;l; ;Ilsg’;ce?_n lrr:provement in ;e(ljf—lmage score after three months’ therapy was recorded as a positive
ioration was recorded as a negative. One client’s self-i i is
| result was omitted from the analysis. The ining i eilinfiee To uitonal donfedf
| : : remaining nine results were submitted to a binomial si
1 the rate of improvement over deterioration was found to be significant, s = 1, p < .05 ol lgntestane
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Glossary

Binomial sign test (S)

d, Cohen’s

Delta (8)

Difference mean
Distribution dependent test

Distribution free test

Eta-squared 2
Homogeneity of variance

Mann-Whitney U test
Non-parametric test

Parametric test

Pooled variance

Power efficiency
Related ¢ test

Robustness

ISt

Sign test

t

T

Ties (tied ranks)
U

Unrelated ¢ test

Wilcoxon’s T — matched pairs

signed ranks test

Nominal-level test for difference between two sets of paired/related
data using direction of each difference only

Measure of effect size; used here in calculating power

Statistic used to estimate power using the effect size

Mean of differences between pairs of scores in a related design
Significance test making estimations of population parameters

Significance test that does not depend on estimated parameters of an
underlying distribution

Measure of effect size
Situation where sample variances are similar

Ordinal-level significance test for differences between two sets of
unrelated data

Significance test that does not make estimations of parameters of an
underlying distribution; also known as a distribution free test

Relatively powerful significance test that makes estimations of
population parameters; the data tested must usually therefore satisfy
certain assumptions; also known as a distribution dependent test

Combining of two sample variances into an average in order to
estimate population variance

Comparison of the power of two different tests of significance.
Parametric difference test for related data at interval level or above.

Tendency of test to give satisfactory probability estimates even when
data assumptions are violated.

See binomial sign test

See binomial sign test

See related and unrelated t test

See Wilcoxon test

Feature of data when scores are given identical rank values.

See Mann-Whitney test

Parametric difference test for unrelated data at interval level or above

Ordinal-level significance test for differences between two related sets
of data

Tests for categorical |
variables and |
frequency tables

The chi-square (x?) test presented in this chapter is concerned entirely with categorical variables;
those producing nominal data, that is, frequencies by categories.

Chi-square is first used to analyse a simple division of one variable into two levels of frequencies.

e The concept of expected frequencies under the null hypothesis is introduced.

o Cross-tabs tables are then introduced and chi-square used to analyse for association
between two categorical variables with two levels each (a 2 x 2 analysis).

o The generalised form of chi-square testing r x ¢ tables (those with any number of rows and
columns) is then covered, e.g. three types of training by pass/fail.

e Chi-square can also be used as a goodness of fit test to check whether a distribution of
frequencies in categories is a close fit to a theoretical distribution (e.g. whether a college’s
pattern of degree classifications match the average pattern for the country).

e There are limitations on the use of chi-square: data must be frequencies, not ratios, means
or proportions, and must belong exclusively to one or another category, i.e. the same case
(person) must not appear in more than one ‘cell’ of the data table.

e There is statistical debate about low expected cell frequencies. It is advisable to avoid these
where possible. If low expected frequencies do occur, sample sizes above 20 make the risk
of a Type | error acceptably low.

e Power and effect size calculations for chi-square are given. SPSS procedures for chi-square
analyses are described.

The chapter then moves on to the analysis of multi-way (i.e. not just two-way) tables using log-linear
analysis. The likelihood tatio chi-square is used to investigate higher-order interactions for significance,
then proceeds hierarchically downwards from the initially saturated model, to one-way effects.
SPSS analysis is described.

Tests on two-way frequency tables

- Very often the design of our research study entails that we gather data that are categorical in nature.

Have a look at the data in Table 16.1 and Table 16.2 which are frequency tables for people assessed
9N two categorical variables. Such tables are called CROSS-TABULATION (or CROSS-TABS) TABLES. In the
first of these, the (fictitious) data have been gathered by observing whether a car is new or old, and
Whether its driver does or does not obey the amber signal at a pedestrian crossing. The hypothesis
i5 that drivers of newer cars conform more often to the traffic regulation of stopping on amber. The
Tationale might be that drivers of newer cars are likely to be older and more experienced.
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The numbers in the cells of this kind of table are frequencies — they are just a count of the number of
cases (people in this case) observed in each cell of the table. Notice from the table that, of those
driving a new car, far more stopped at amber than drove on, whereas for the drivers of older cars,
the frequencies of stopping and not stopping were almost equal. Our statistical test will tell us
whether this difference in stopping proportions between the two sets of drivers can be considered
significant or not. We will see whether stopping is associated with age of car.

We could of course have gathered measured (not categorical) data by measuring speed or obtaining
the exact year of manufacture of a car and by stopping drivers and interviewing them about
conformity or giving them a questionnaire. This might be possible in a shopping area car park but
it would be time-consuming and our drivers would be susceptible to several of the forms of bias
involved when participants know they are being studied. The observation method has the great
advantage of gathering data on naturally occurring behaviour but often has the disadvantage, in this
case, of having the independent variable (age of car) and the dependent variable (stopped or not)
both assessed only at a categorical level.

Age category of car

New old Total
Behaviour at amber light
Stopped 90 (a) 88 (b) 178
Did not stop 56 (c) 89 (d) 145
Total 146 177 323

Table 16.1 Frequencies of drivers by age of car and whether they stopped at an amber light or not

The data in Table 16.2 are the actual results of the study by Cialdini et al. (1990) mentioned in
Chapter 3 where people were observed on a path after they had been handed a leaflet. The
researchers varied the number of pieces of litter already present and observed whether each person
dropped their leaflet or not. Here the independent variable is not originally categorical (it had the
measured values 0, 1, 2, 4, 8, 16), but since the dependent variable had to be categorical (they either
dropped their leaflet or they didn’t) it was simplest to treat both variables as categorical by
reducing the independent variable values to three categories (0/ 1, 2/4, 8/16) as shown in the table.

Amount of existing litter

2 or 4 pieces 8 or 16 pieces

Observed person 0 or 1 piece

Dropped litter 17 28 49
Didn"t drop litter 102 91 71

Table 16.2 Number of pieces of existing litter and consequent littering (Cialdini et al., 1990)

Gialdini, R.B., Reno, R.R. and Kallgren, C.A. (1990) A focus theory of normative conduct: Recycling the concept of
norms to reduce litter in public places. Journal of Personality and Social Psychology, 58, 101 5-26. Copyright © 1990
American Psychological Association.

A measured dependent variable in any study can always be reduced to categorical level in a similar
way where this is useful. We may, for instance, split a group of extroversion scores at the median
value and refer to those above the median as ‘extroverts’ and those below as ‘introverts’. We may
reduce smoking information down to the categories: ‘non-smoker’, ‘1 to 5 a day’, ‘6-20 a day’ and
tover 20 a day’. The codes 1 to 4 given to these four categories could at a stretch be treated as
ordinal-level data but with the practical problem that too many people would be tied at each rank.
Instead, we can treat the codes as category names and simply count the number of people in each

category.

Unrelated data — the Chi-square test of
association

When to use chi-square or 2

Type of relationship tested Level of data required Design of study

Association between two
variables

Nominal/categorical Between groups:

Independent samples

Data assumptions: Each observed person (or case) must appear in one only of the
frequency cells. It must be impossible for them to appear in more than one cell.

Notes: No more than 20% of the expected frequency cell counts should be less than 5.

‘chi’ is pror)ounced ‘kye’ in English. It is an approximation to the name for the Greek
letter X which starts with ‘ch’ as in the Scottish pronunciation of ‘loch’ and is the
symbol for the statistic in this test.

Chi-square is the test to use when we are looking for an association, or a difference in proportions,
as in the examples above, and where the variables concerned are both categorical. The design will
be between groups. To move towards the thinking behind chi-square I would like to start with one of
those situations I like to use that demonstrate the value of statistical competence in protecting us
against the outlandish claims of some advertisers. Have a look at Box 16.1.

The marketing survey results described in Box 16.1 might seem, at first sight, very impressive (one
colleague I spoke to about this said, ‘Never mind the stats, Hugh, where do I get hold of the
stuff?’!). We learn that of 550 women provided with a free sample and using it for one month, 56%
reported a loss of up to one inch from their thighs, and 52% reported the same for their hips.
However, let’s think what we would expect if the null hypothesis were true. H, would be based on
the concept of the women choosing one answer or the other (‘gained’ or ‘lost’) entirely at random.
On this basis, then, we would expect, from 550 choices, 275 ‘gains’ and 275 ‘losses’. In chi-square
terminology, these frequencies predicted under the null hypothesis are known as EXPECTED
FREQUENCIES — they are what we typically expect to occur with our overall frequencies if H, is true.
The frequencies we actually obtain from our study are referred to as OBSERVED FREQUENCIES.
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Info Box 16.1 ( Does the magic gel really work?

Some years ago Christian Dior ran an advert in a colour supplement claiming that, of 550 women asked
to use a fat-reducing gel (Svelte) for one month, 52%, in a later survey, claimed they had lost ‘up to one
inch’ off their hips during that period, while 56% had lost the same amount off their thighs. Now this
might sound very impressive indeed, except that we do not know what questions were asked in the
survey. This is a perfect example of the need to know what question was asked before being able to
interpret fully an apparently strong piece of evidence. It is unlikely that the women were simply asked to
give open-ended responses. It is very likely indeed that they were asked to respond to multiple-choice
items, such as ‘Over the last month did you:

(a) lose up to one inch off your hips
(b) gain up to one inch on your hips
(c) notice no change at all on your hips?*

For simplicity’s sake let’s ignore the last alternative since there would always be some, perhaps very tiny,
change over one month. In fact, the Dior marketing people might have only asked each woman to
measure their hips at the start and at the end of the one-month trial and to take the difference. There
will always be a small difference between two measures of the same thing (random error) so each
woman could then have recorded either ‘increased’ or ‘decreased’.

Here, then, let’s imagine we have 52% of the sample of 550 saying ‘lost’ and 48% saying ‘gained’ in
reference to their hips. That's 286 positive and 264 negative outcomes from the Dior marketing
perspective. Questions for you to ponder are:

1 How many of the 550 women would respond ‘positive’ and how many ‘negative’ if they were simply
tossing a coin (i.e. selecting an alternative at random)?

2 On the basis of your answer to the question above, are the 286 vs 264 results impressive (i.e. will we
consider them to be a significant difference?) or are they within the range we might reasonably expect
‘by chance’ if the women are selecting their response at random?

Taking the slightly more impressive 56% losing up to one inch from their thighs, you might ponder the

: same questions. |

Calculating expected frequencies in a one-row chi-square
analysis

To make things formal (and for more complex examples) we calculate the expected frequencies for
a single-row analysis using N/k where N is the total number of cases (550 in this case) and k is the
number of cells to average across. Hence, here, 550/2 = 275.

Women reporting Women reporting Total
a loss of up to 1” a gain of up to 1”
Observed frequencies (obs) {(a) 286 (b) 264 550
Expected frequencies (exp) (a) 275 (b) 275 550

Table 16.3 Observed and expected frequencies for women reporting losses or gains after using gel
for one month

pata for a one-row chi-square analysis
The data for our first simple chi-square test on the hip data, then, would appear as in Table 16.3.

The null hypothesis for chi-square

The null hypothesis in a chi-square analysis is always that the populatign is distribut.ed in the
attern of proportions shown by the expected frequencies. Our alternative hypothemg (or rather
Christian Dior’s) is that more people (in the population) report a loss than report a gain after. one
month’s use. Referring to Table 16.3, we need therefore to see whetherlour observed ﬁ'equenaes. of
186 (loss’) and 264 (‘gain’) differ significantly from the expected frequencies of 275 and 275, which

would occur under H,,.

Testing the null hypothesis

The chi-square statistic gets larger as the observed cell frequencies depart from what is expected
under Hj, — that is, from the expected frequencies. We can see in Table 16.3 that we would be more
convinced of the effectiveness of Svelte gel the further cell a,p, rises above cell a,y,. We calculate chi-

square using:

2
2 O-E

To calculate, we take each set of cells in turn (in Table 16.3, cell a then cell b) and perform the
calculation shown after the 3 symbol above. As in the past, the 3 symbol means ‘add up the results

of each of what follows’.

Calculation of chi square using the data in Table 16.3

O-E (O - E)? 3 (O - Ef'/E Result
Cell 4 286-275 = 11 112 = 121 121/275 = 0.44
Cell 4 264-275 = -11 ~112 = 121 121/275 = 0.44

X = 3 (O—EJJE = 0.88

In this calculation we find that y? is 0.88. We need to check this value for significance. 2 uses
degrees of freedom. For a one-row analysis df are k—1 where k is the number of cells, so here df are
2-1=1.

Consulting Appendix Table 8 we find that we require a %2 value of at least 3.84 for p < .05 with a
two-tailed test. Hence our difference is not significant. The conclusion here would be that use of
Svelte gel has not resulted in a significant proportion of women reporting a loss of up to one inch
from around their hips.
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What about the result for thighs?
You might think we cheated a little there by dealing only with the less impressive hip data. OK.
Let’s look at the thigh data, then.

Pause for thought

Calculate the chi-square value for th
the sample reported a loss of up to

‘
e thigh data following the example above for hips. Dior said that 56% of
one inch from their thighs; 56% of 550 is 308 so we have observed

frequencies of 308 lost up to one inch and 242 gained up to one inch, by our definitions. Expected
frequencies are again 275 in each cell.

You should find that 2 is 7.92. This value is well above the required critical value of 8.84 so we
certainly have a significant result here. This appears to support the effect of Svelte gel.

The 2 x 2 chi-square

A 2 x 2 arrangement is the simplest of cross-tabs tables and is really what we need for a fair

scientific test of the gel data. Of

course ] wasn'’t going to accept that the gel worked on thighs.

What any scientist worth their salt would have immediately asked on hearing that results is “Well
where was the control group?’. We can’t really assume that of 550 women, using the gel for a

month, just half would report a

know no better — if we had no chance of determining what would happen under a free choice. But

Joss and half a gain. This is what we might assume if we could

we can find out what would happen. What we need is a control group with whom to compare our

‘experimental’ group, the one whose results Dior reported. On one occasion I did informally ask all

the women in a lecture audience to answer the thighs-larger-or-smaller-after-a-month question
‘cold’ (with no prior information about the gel advert, but with assurances that the purpose was
statistical demonstration); 53% reported a loss and 47 % reported a gain, when forced to choose

between these two alternatives,

these same percentages would be found in a formal and well-designed study using a control group
of 550 women, equal in number to the Dior survey group. If 53% chose loss and 47 % chose gain,

even though they had not used any gel. Let’s just suppose that

then we would obtain the (rounded) figures shown in Table 16.4.

Participant reports:

Lost up to one inch Gained up to one inch Total
Gel use group (a) 308 (c) 242 550
Control group (b) 292 (d) 258 550
Total 600 500 1100

Table 16.4 Fictitious observed frequencies of gel-using and control group participants reporting loss

or gain of up to one inch from thighs

T

What we have in Table 16.4 is a classic form of data table for which we would calculate a 2 x 2
CHI-SQUARE in order to discover whether there is an association between using gel and losing fat (‘2
x 2’ because there are two columns and two rows). Note that we are assuming that the -
independent variable (gel use) is having a causal effect on a dependent variable (loss or gain of fat
Note also that these two variables are both at a categorical level because they are not mgeasuredao).
any sort of scale and each has just two qualitatively separate levels. It is not necessary, however fn
there to be an experimental independent variable and dependent variable. We could b’e interestejd -
for instance, in whether introverts are more likely to feel awkward on a nudist beach than ,
extroverts (see Table 16.5). Introversion need not cause introverts to feel awkward: awkwardne

may be related to or simply a part of the overall introverted personality characteri’stic. ”

. Extrovert Introvert Total
would feel comfortable (a) 40 (b) 10 50
would not feel comfortable (c) 10 (d) 40 50
Total 50 50 100

Table 16.5 Observed frequencies of introverts and extroverts who report that they would or
would not feel comfortable on a nudist beach

Expected frequencies for the new gel data

The null hypothesis for the new (fictitious) gel study is based on the assumption that there is
absoh.ltely no association, in the population as a whole, between using gel and changes in fat. More
technically, it assumes that frequencies in the population are arranged as are the frequencies i.n the
‘totail’ columns in Table 16.4; that is, we assume that frequencies of people reporting a loss of up to
one inch would be equally split between those using the gel and those not using the gel. In othgr
words, whether you use gel or not, you have the same chance of appearing in the ‘lost’ ;:olumn.

Pause for thought

[ -
n our fictitious study, 550 women used gel and 550 women did not. /f there is no association between usin

| g€l and Josing fat, how many of the 600 shown in Table 16.4 who ‘lost up to one inch” would you expect to

find in the ‘gel use’ row, that is, in cell a?

iélope you decided that just half the fat losers (i.e. 300) should be gel users and half should be in
¢ control group. There were equal numbers of users and non-users and, if gel use has nothing to

O with fat loss, then about half those who lose weight would be from each group. The expected

freqlienc:ies are shown in Table 16.6.
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Participant reports:

Lost up to one inch Gained up to one inch Total
Gel use group (a) 300 (c) 250 550
Control group (b) 300 (d) 250 550
Total 600 500 1100

Table 16.6 Fictitious expected frequencies of gel-using and control group participants reporting loss

or gain of up to one inch from thighs

In the frequency tables above, the cells under the title ‘Total’ are known as MARGINALS; that is, they
are the margins of all the rows, showing how many in each row altogether, and the margins of all
columns showing how many altogether in each column. All expected frequencies are calculated
based on the reasoning for the gel table above. We assume that the total for each column will be
divided according to the proportions of the row marginals; 600 will be divided in the ratio 550 to
550. The formula for calculating expected cell frequencies is:

E=RC

T
where R is the total of the row in which the cell is situated, and C is the total of its appropriate
column. T is the overall total (1100 in the gel table example). However, you already did in fact use a
version of this in your head in deciding that 550/1100 (R/T) of the 600 fat losers (C) would be
expected in cell a. The general formula is used because, in most cases, the numbers are not quite as
simple as the ones I've partly invented here. It is important to remember that ‘expected frequencies’
are those ‘expected’ under the null hypothesis, not those (in fact the opposite of those) that the
researcher usually expects (or would like) to occur in the research study.

Let me try to outline a visual example of what a 2 x 2 chi-square does (roughly spéaking) by
referring to the extrovert/introvert nudist data in Table 16.5. 50% of all participants reported feeling
comfortable on a nudist beach. Hence, half the introverts and half the extroverts should, in turn,
report feeling comfortable, if there is no link between feeling comfortable and extroversion. The
expected frequencies for this example, then, are 25 in each cell, as shown in Table 16.7. For a
significant result, indicating an association between extroversion and feeling comfortable, we
would want the observed frequencies in cells 4 and 4 to be much higher than 25 and for the
frequencies in cells # and ¢ to be much lower.

Extrovert Introvert Total
Would feel comfortable (a) 25 (b) 25 50
Would not feel comfortable (c) 25 (d) 25 50
Total 50 50 100

Table 16.7 Expected frequencies of introverts and extroverts who report that they would or would not feel
comfortable on a nudist beach

Ir;) Pigure' 16. 1' we have an imaginary box with four compartments into which we ‘drop’ the
Znsteor\i;tlons in a randorzll lr)nanner. Imagine each one of the 100 observations is a little ball dropped
e centre spot and bouncing randomly into one of the four equal-sized

is a limitation to the randomness here — when any ro e 50,50 o o e
: y row or column adds up to 50 we sto itti

balls k1‘nto that row or column. If we dropped the 100 balls many many times then rougrl)llpemllttlng

slpea f1ng, the results wpuld vary around those in Table 16.7, mostly by only a littl:e but so}r,netimes

( I:'ss requently) by quite a lot. If we calculate chi-square for every drop of 100 balls, then through

this ranFlom process we ng create a distribution of chi-square values. For a signific;nt result ;Niat

we C?re 11nteres£ed 1;1 is 1obtalning a chi-square value that is in the top 5% of this distribution c;f

randomly produced values — that is, we want a chi-s

! : - , quare value that would occur less th i

in 100 if the null hypothesis were true (if the balls were bouncing randomly). e a2 fimes

Random bounce

—

info any cell

Figure i-
4 16.1 Chi-square assumes random bouncing into cells up to the row and column totals

Data for regular 2 x 2 chi-square test

f;:; iito ? Ocalculate a 2l x 2 chi-square on the data in Table 16.1. Assume these were data gathered in

- explaineiyafiictlca Wofrksbop and the proposal is that drivers of new cars are more law abiding,

light gt e s}tlart. of this chapter. Here, then, if car age is not related to stopping at the amber

e o ypothesis), ﬂthe expected frequencies would be that just 80 of the 146 new car

g elcli stop (cai{culated below) whereas, in fact, 90 did so. Only 50% of the drivers of old

ey p}; , compared to the greater proportion of new car drivers. The observed frequencies vary
ar from the expected frequencies, so chi-square will be high and perhaps significant.
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Calculation of a 2 x 2 chi-square

Procedure Calculation/result of steps

1 Give each corresponding observed and See letters a, b, ¢, d in Table 16.1

expected cell a letter

Cell a: 146 x 178/323 = 80.46
Cell b: 177 x 178/323 = 97.54
Cell ¢: 146 x 145/323 =  65.54
Cell d: 177 x 145/323 = 79.46

2 Calculate expected frequencies using

E = ETQ (see p. 404)

3 Calculate 42 according to the x? formula | See the calculation table below:

given on p. 401

O-E (O-E)? (O-E)%/E Result
Cell a 90-80.46 = 9.54 9.542 = 91.01 91.01/80.46 = 1.13
Cell b 88-97.54 = -9.54 -9.542 = 91.01 91.01/97.54 = 0.93
Cell c 56-65.54 = -9.54 -9.542 = 91.01 91.01/65.54 = 1.39
Celld 89-79.46 = 9.54 9.542 = 91.01 91.01/79.46 = 1.15
y2 =3(0-E)P/E = | 4.6

4 Calculate degrees of freedom (df) df = (2-1)(2-1) =1
according to the formula:

df = (R-1)(C-1)

Note that, for all §2 tests, df are the number of cells you would need to know, given you
already know the marginal values, in order to calculate all the rest of the cell values; in a
2 x 2 table, once we know one cell we can calculate all the rest if we already know the

column and row totals. Hence df = 1

Fordf=1andp=< .05anda two-tailed test,
¥2 must be greater than or equal to 3.84,
hence, our ¥Z is significant and we may
reject the null hypothesis.

5 Using Table 8 in the Appendix, check
that 2 reaches the appropriate critical
value for df and alpha (usually set at
.05) and decide upon significance.

Interpreting and reporting the result

Around half the old cars didn’t stop, whereas only around a third of new cars failed to stop. Our
observed frequencies differ significantly from what we’d expect if H, is true where the proportion
stopping and not stopping would be the same for new and old cars. We have therefore provided
evidence that drivers of new cars are more law-abiding at traffic lights than drivers of old cars.

Effect size

For a general introduction to the importance of estimating effect size and checking power please
see p. 385. Effect size for 2 x 2 chi-square analyses can be estimated using the PHI COEFFICIENT

(which We will meét again in Chapter 17 for different but related reasons). Phi is pronounced as in
the English word ‘fie’. The more general term is CRAMER’S PHI (also called Cramer’s V) when

analysing cross-tab tables where at least one variable has more than two levels or categories. Th
formula we require is: e

Cramer's & \/T
rtamer's @ =, | ———
(]V) df:vmaller

A ynatier T1EANS either (rows -1) or (columns -1), whichever is smaller.
2

For our 2 x 2 case, where (rows -1) o (columns -1) = 1, the ex i 4 i
: . 56, =1, pression reduces to = 4 [ ==
is the phi coefficient. Our @ will be v4.6/323 =v0.014 = 0.118. N which

Cohen (1‘988) produced some effect size conventions for Cramer’s @ that depend on the df for the
smaller side of the contingency table, i.e. df; (see Table 16.8).

maller

Effect size
Af s atier Small Medium Large
1 .10 .30 .50
2 .07 21 35
3 .06 A7 .29

Table 16.8 Cohen’s effect size definitions for Cramer’s @

Our effect size of 0.118 would therefore be designated as ‘small’ since our df, 1
i .

maller 18

Reporting the result of a chi-square analysis

Zo.me 5_0.3% of drivers in old cars (89/177) failed to stop at an amber traffic light, whereas only 38.4% of
rivers in new cars (56/146) failed to stop. A y? analysis of the difference between stop/didn’t stop frequencies

across drivers of new and old cars was significant, y2 (1, N = 323) = .
with phi = 0.118. 9 (1, 3) = 4.6, p < .05. The effect size was small

Quick 2 x 2 formula

This can be used only where there are two columns and two rows, as in the example above. It

saves the labour of calculating expected frequencies and, if you’re handy with a calculator, you'll
find this can be done in one move from the observed cell totals: 7

2_ N (ad—bc)?
(@+b)(c+d)(a+c)(b+d)

where N is the total sample size.
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Research Methods and Statistics in Psychology

A researcher suggested that graduate extroverts/introverts should not show the divisions previously shown
by non-graduates about feeling comfortable or not on a nudist beach. The (fictitious) data below were
gathered. Analyse the data using hierarchical log-linear analysis and check whether the hypothesis is

supported.
Graduates Non-graduates
Comfortable Not Comfortable Not
comfortable comfortable
Extrovert 39 11 40 10
Introvert 24 26 10 40

J
- - - - - .-"‘

The three-way interaction is significant; x? (1) = 4.63, p = .03 1. Hence the final model had.the generating
class extrovert/introvert x graduation status x comfort level. Two-way interactions were also significant; xz
(3) = 47.234,p = .001. One-way (main) effects were not significant. The researcher appears vindicated in
the proposition that graduates do not show the extremes that non-graduates show but the effect comes
almost entirely from graduate introverts being less likely to feel uncomfortable than non-graduate

introverts.

Glossary

Chi-square (y?)

Chi-square change

Cramer’s phi or V

Cross-tabs table
Expected frequencies
Goodness of fit

Hierarchical loglinear analysis

Statistic used in tests of association between two unrelated categorical
variables. Also used in goodness of fit test, log-linear analysis and
several other tests

Change in chi-square as items are removed from the saturated model
in log-linear analysis

General statistic used to estimate effect size in chi-square analyses

Term for table of frequencies on levels of a variable by levels of a
second variable

Frequencies expected in table if no association exists between variables
—i.e. if null hypothesis is true

Test of whether a distribution of frequencies differs significantly from @
theoretical pattern

Removing items from a saturated log-linear model moving downwards.
towards one-way effects

Likelihood ratio chi-square

Log-linear analysis
Log-linear model
Marginals

observed frequencies

phi coefficient (P)

saturated model

Type of chi-square statistic used in log-linear analysis

Analysis similar to chi-square but which will deal with three-way tables
or greater

A theoretical and statistical structure proposed to explain cell
frequency variation in a multi-way frequency table

The total of columns and rows, and the overall total of freqt.iencies, in
a cross-tabs table

Frequencies obtained in a research study using categorical variables
Statistic used for effect size estimate in a 2 x 2 table after 2 analysis

Model in log-linear analysis that explains all variation in a multi-way
frequency table so that chi-square is zero and expected frequencies are
the same as observed frequencies
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