Lyhyt matematiikka

1. Luvut ja lukujonot (MAY1)

Tavoitteet

  • Kurssin tavoitteena on, että opiskelija
  • pohtii matematiikan merkitystä yksilön ja yhteiskunnan näkökulmasta
  • kertaa ja täydentää lukualueet, kertaa peruslaskutoimitukset ja prosenttilaskennan periaatteet
  • vahvistaa ymmärrystään funktion käsitteestä
  • ymmärtää lukujonon käsitteen
  • osaa määrittää lukujonoja, kun annetaan alkuehdot ja tapa, jolla seuraavat termit muodostetaan
  • saa havainnollisen käsityksen lukujonon summan määrittämisestä
  • osaa ratkaista käytännön ongelmia aritmeettisen ja geometrisen jonon ja niistä muodostettujen summien avulla
  • osaa käyttää teknisiä apuvälineitä funktion kuvaajan ja lukujonojen tutkimisessa sekä lukujonoihin liittyvien sovellusongelmien ratkaisussa.
Keskeiset sisällöt
  • reaaliluvut, peruslaskutoimitukset ja prosenttilaskenta
  • funktio, kuvaajan piirto ja tulkinta
  • lukujono
  • rekursiivinen lukujono
  • aritmeettinen jono ja summa
  • logaritmi ja potenssi sekä niiden välinen yhteys
  • muotoa , x ∈ℕ olevien yhtälöiden ratkaiseminen
  • geometrinen jono ja summa


Matematiikan lyhyt oppimäärä

Matematiikan lyhyen oppimäärän opetuksen tehtävänä on tarjota valmiuksia hankkia, käsitellä ja ymmärtää matemaattista tietoa ja käyttää matematiikkaa elämän eri tilanteissa ja jatko-opinnoissa. Opetus pyrkii myös antamaan opiskelijalle selkeän käsityksen matematiikan merkityksestä yhteiskunnan kehityksessä sekä sen soveltamismahdollisuuksista arkielämässä ja monissa eri tieteissä.

Opetuksen tavoitteet

Matematiikan lyhyen oppimäärän opetuksen tavoitteena on, että opiskelija

  • osaa käyttää matematiikkaa jokapäiväisen elämän ja yhteiskunnallisen toiminnan apuvälineenä
  • saa myönteisiä oppimiskokemuksia matematiikan parissa työskennellessään, oppii luottamaan omiin kykyihinsä, taitoihinsa ja ajatteluunsa ja rohkaistuu kokeilevaan, tutkivaan ja keksivään oppimiseen
  • hankkii sellaisia matemaattisia tietoja, taitoja ja valmiuksia, jotka antavat riittävän pohjan jatko-opinnoille
  • sisäistää matematiikan merkityksen välineenä, jolla ilmiöitä voidaan kuvata, selittää ja mallintaa ja jota voidaan käyttää johtopäätösten tekemisessä
  • kehittää käsitystään matemaattisen tiedon luonteesta ja sen loogisesta rakenteesta
  • harjaantuu vastaanottamaan ja analysoimaan viestimien matemaattisessa muodossa tarjoamaa informaatiota ja arvioimaan sen luotettavuutta
  • tutustuu matematiikan merkitykseen kulttuurin kehityksessä
  • osaa käyttää kuvioita, kaavioita ja malleja ajattelun apuna
  • osaa käyttää tarkoituksenmukaisia matemaattisia menetelmiä, teknisiä apuvälineitä ja tietolähteitä. Kurssin tavoitteena on, että opiskelija

Pakolliset kurssit

2. Lausekkeet ja yhtälöt (MAB2)

Tavoitteet

  • harjaantuu käyttämään matematiikkaa jokapäiväisen elämän ongelmien ratkaisemisessa ja oppii luottamaan omiin matemaattisiin kykyihinsä
  • ymmärtää lineaarisen riippuvuuden, verrannollisuuden ja toisen asteen polynomifunktion käsitteet
  • vahvistaa yhtälöiden ratkaisemisen taitojaan ja oppii ratkaisemaan toisen asteen yhtälöitä
  • osaa käyttää teknisiä apuvälineitä polynomifunktion tutkimisessa ja polynomiyhtälöihin sekä polynomifunktioihin liittyvien sovellusongelmien ratkaisussa.
Keskeiset sisällöt
  • suureiden välinen lineaarinen riippuvuus ja verrannollisuus
  • ongelmien muotoileminen yhtälöiksi
  • yhtälöiden ja yhtälöparien graafinen ja algebrallinen ratkaiseminen
  • ratkaisujen tulkinta ja arvioiminen
  • toisen asteen polynomifunktio ja toisen asteen yhtälön ratkaiseminen Kurssin tavoitteena on, että opiskelija

3. Geometria (MAB3)

Tavoitteet

  • harjaantuu tekemään havaintoja ja päätelmiä kuvioiden ja kappaleiden geometrisista ominaisuuksista
  • vahvistaa tasokuvioiden ja kolmiulotteisten kappaleiden kuvien piirtämisen taitojaan
  • osaa ratkaista käytännön ongelmia geometriaa hyväksi käyttäen
  • osaa käyttää teknisiä apuvälineitä kuvioiden ja kappaleiden tutkimisessa ja geometriaan liittyvien sovellusongelmien ratkaisussa.
Keskeiset sisällöt
  • kuvioiden yhdenmuotoisuus
  • suorakulmaisen kolmion trigonometria
  • Pythagoraan lause ja Pythagoraan lauseen käänteislause
  • kuvioiden ja kappaleiden pinta-alan ja tilavuuden määrittäminen
  • geometrian menetelmien käyttö koordinaatistossa Kurssin tavoitteena on, että opiskelija

4. Matemaattisia malleja (MAB4)

Tavoitteet

  • näkee reaalimaailman ilmiöissä säännönmukaisuuksia ja riippuvuuksia ja kuvaa niitä matemaattisilla malleilla
  • tottuu arvioimaan mallien hyvyyttä ja käyttökelpoisuutta
  • tutustuu ennusteiden tekemiseen mallien pohjalta
  • osaa käyttää teknisiä apuvälineitä polynomi- ja eksponenttifunktion ominaisuuksien tutkimisessa sekä polynomi- ja eksponenttiyhtälöiden ratkaisussa sovellusongelmien yhteydessä.Keskeiset sisällöt
  • lineaarisen ja eksponentiaalisen mallin soveltaminen
  • potenssiyhtälön ratkaiseminen
  • eksponenttiyhtälön ratkaiseminen logaritmin avulla
  • lukujonot matemaattisina malleina

5. Tilastot ja todennäköisyys (MAB5)

Tavoitteet
  • Kurssin tavoitteena on, että opiskelija
  • harjaantuu käsittelemään ja tulkitsemaan tilastollisia aineistoja
  • arvioi erilaisia regressiomalleja mm. taulukkolaskentaohjelman avulla ja tekee ennusteita mallien avulla
  • perehtyy todennäköisyyslaskennan perusteisiin
  • osaa käyttää teknisiä apuvälineitä digitaalisessa muodossa olevan datan hakemisessa, käsittelyssä ja tutkimisessa sekä diskreettien jakaumien tunnuslukujen määrittämisessä ja todennäköisyyslaskennassa.
Keskeiset sisällöt
  • diskreettien tilastollisten jakaumien tunnuslukujen määrittäminen
  • regression ja korrelaation käsitteet
  • havainto ja poikkeava havainto
  • ennusteiden tekeminen
  • kombinatoriikkaa
  • todennäköisyyden käsite
  • todennäköisyyden laskulakien ja niitä havainnollistavien mallien käyttöä

6. Talousmatematiikka (MAB6)

Tavoitteet

  • syventää prosenttilaskennan taitojaan
  • ymmärtää talouselämässä käytettyjä käsitteitä
  • kehittää matemaattisia valmiuksiaan oman taloutensa suunnitteluun
  • vahvistaa laskennallista pohjaansa yrittäjyyden ja taloustiedon opiskeluun
  • soveltaa tilastollisia menetelmiä aineistojen käsittelyyn
  • osaa käyttää teknisiä apuvälineitä laskelmien tekemisessä ja yhtälöiden ratkaisemisessa sovellusongelmissa.
Keskeiset sisällöt
  • indeksi-, kustannus-, rahaliikenne-, laina-, verotus- ja muita laskelmia
  • taloudellisiin tilanteisiin soveltuvia matemaattisia malleja lukujonojen ja summien avulla Kurssin tavoitteena on, että opiskelija