## HL/ Polynomials 7.5.2020 [66 marks]

| 1. | Let $P\left(z ight)=az^{3}-37z^{2}+66z-10$ , where $z\in\mathbb{C}$ and $a\in\mathbb{Z}.$<br>One of the roots of $P\left(z ight)=0$ is $3+\mathrm{i}.$ Find the value of $a.$ | [6 marks]          |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 2. | The polynomial $x^4 + px^3 + qx^2 + rx + 6$ is exactly divisible by each of $(x-1)$ , $(x-2)$ and $(x-3)$ .<br>Find the values of $p$ , $q$ and $r$ .                         | [5 marks]          |
|    | Consider the polynomial $q(x)=3x^3-11x^2+kx+8.$                                                                                                                               |                    |
| 3a | . Given that $q(x)$ has a factor $(x-4)$ , find the value of $k$ .                                                                                                            | [3 marks]          |
| 3b | . Hence or otherwise, factorize $q(x)$ as a product of linear factors.                                                                                                        | [3 marks]          |
|    | Two distinct roots for the equation $z^4-10z^3+az^2+bz+50=0$ are $a^2+\mathrm{i}d$ where $a,b,c,d\in\mathbb{R},d>0.$                                                          | $e+\mathrm{i}$ and |
| 4a | . Write down the other two roots in terms of $c$ and $d$ .                                                                                                                    | [1 mark]           |
| 4b | . Find the value of $c$ and the value of $d$ .                                                                                                                                | [6 marks]          |
|    |                                                                                                                                                                               |                    |

5a. Given that  $(x+\mathrm{i} y)^2=-5+12\mathrm{i},\;x,\;y\in\mathbb{R}$  . Show that

- (i)  $x^2 y^2 = -5$ ; (ii) xy = 6.
- 5b. Hence find the two square roots of  $-5+12{
  m i}$  .

[5 marks]

[2 marks]

5C. For any complex number z , show that  $(z^*)^2 = (z^2)^*$  . [3 marks]

5d. Hence write down the two square roots of  $-5-12\mathrm{i}$  .

The graph of a polynomial function *f* of degree 4 is shown below.



- 5e. Explain why, of the four roots of the equation f(x) = 0 , two are real and [2 marks] two are complex.
- 5f. The curve passes through the point (-1, -18) . Find f(x) in the form [5 marks] $f(x)=(x-a)(x-b)(x^2+cx+d), ext{ where } a, \ b, \ c, \ d\in\mathbb{Z}$ .

5g. Find the two complex roots of the equation f(x) = 0 in Cartesian form. [2 marks]

5h. Draw the four roots on the complex plane (the Argand diagram). [2 marks]

- 5i. Express each of the four roots of the equation in the form  $re^{i\theta}$ . [6 marks]
- 6. (a) Show that the complex number i is a root of the equation [6 marks]

$$x^4 - 5x^3 + 7x^2 - 5x + 6 = 0$$
.

(b) Find the other roots of this equation.

Consider the equation  $z^3+az^2+bz+c=0$  , where a , b,  $c\in\mathbb{R}$  . The points in the Argand diagram representing the three roots of the equation form the vertices of a triangle whose area is 9. Given that one root is  $-1+3\mathrm{i}$  , find

7. (a) the other two roots; (b) a , b and c .

© International Baccalaureate Organization 2020 International Baccalaureate ® - Baccalauréat International ® - Bachillerato Internacional ®



b



International Baccalaureate Baccalauréat International

Bachillerato Internacional

[7 marks]