Complex numbers 29.4.2020

[41 marks]

$+ \ \mathrm{i} b$ where a , $b \in \mathbb{R}$.	[2 ma

	Consider the complex number $z=rac{2+7\mathrm{i}}{6+2\mathrm{i}}.$	
2a.	Express z in the form $a+\mathrm{i} b$, where $a,b\in\mathbb{Q}.$	[2 marks]
2b.	Find the exact value of the modulus of z .	[2 marks]
2c.	Find the argument of z , giving your answer to 4 decimal places.	[2 marks]

Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$.	Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Consider the complex numbers $u=2+3\mathrm{i}$ and $v=3+2\mathrm{i}$. [7 mark (a) Given that $\frac{1}{u}+\frac{1}{v}=\frac{10}{w}$, express w in the form $a+b\mathrm{i},a,b\in\mathbb{R}$.		
Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$.	Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Consider the complex numbers $u=2+3\mathrm{i}$ and $v=3+2\mathrm{i}$. [7 mark (a) Given that $\frac{1}{u}+\frac{1}{v}=\frac{10}{w}$, express w in the form $a+b\mathrm{i},a,b\in\mathbb{R}$.		
Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Consider the complex numbers $u=2+3\mathrm{i}$ and $v=3+2\mathrm{i}$. [7 mark (a) Given that $\frac{1}{u}+\frac{1}{v}=\frac{10}{w}$, express w in the form $a+b\mathrm{i},a,b\in\mathbb{R}$.	Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Consider the complex numbers $u=2+3\mathrm{i}$ and $v=3+2\mathrm{i}$. [7 mark (a) Given that $\frac{1}{u}+\frac{1}{v}=\frac{10}{w}$, express w in the form $a+b\mathrm{i}, a, b\in\mathbb{R}$.		
Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Consider the complex numbers $u=2+3\mathrm{i}$ and $v=3+2\mathrm{i}$. [7 mark (a) Given that $\frac{1}{u}+\frac{1}{v}=\frac{10}{w}$, express w in the form $a+b\mathrm{i},a,b\in\mathbb{R}$.	Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Consider the complex numbers $u=2+3\mathrm{i}$ and $v=3+2\mathrm{i}$. [7 mark (a) Given that $\frac{1}{u}+\frac{1}{v}=\frac{10}{w}$, express w in the form $a+b\mathrm{i},a,b\in\mathbb{R}$.		
Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Consider the complex numbers $u=2+3\mathrm{i}$ and $v=3+2\mathrm{i}$. [7 mark (a) Given that $\frac{1}{u}+\frac{1}{v}=\frac{10}{w}$, express w in the form $a+b\mathrm{i},a,b\in\mathbb{R}$.	Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Consider the complex numbers $u=2+3\mathrm{i}$ and $v=3+2\mathrm{i}$. [7 mark (a) Given that $\frac{1}{u}+\frac{1}{v}=\frac{10}{w}$, express w in the form $a+b\mathrm{i},a,b\in\mathbb{R}$.		
Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Consider the complex numbers $u=2+3\mathrm{i}$ and $v=3+2\mathrm{i}$. [7 mark (a) Given that $\frac{1}{u}+\frac{1}{v}=\frac{10}{w}$, express w in the form $a+b\mathrm{i},a,b\in\mathbb{R}$.	Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Consider the complex numbers $u=2+3\mathrm{i}$ and $v=3+2\mathrm{i}$. [7 mark (a) Given that $\frac{1}{u}+\frac{1}{v}=\frac{10}{w}$, express w in the form $a+b\mathrm{i},a,b\in\mathbb{R}$.		
Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Consider the complex numbers $u=2+3\mathrm{i}$ and $v=3+2\mathrm{i}$. [7 mark (a) Given that $\frac{1}{u}+\frac{1}{v}=\frac{10}{w}$, express w in the form $a+b\mathrm{i},a,b\in\mathbb{R}$.	Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Consider the complex numbers $u=2+3\mathrm{i}$ and $v=3+2\mathrm{i}$. [7 mark (a) Given that $\frac{1}{u}+\frac{1}{v}=\frac{10}{w}$, express w in the form $a+b\mathrm{i},a,b\in\mathbb{R}$.		
Consider the complex numbers $u=2+3{\rm i}$ and $v=3+2{\rm i}$. [7 mark (a) Given that $\frac{1}{u}+\frac{1}{v}=\frac{10}{w}$, express w in the form $a+b{\rm i}, a,\ b\in\mathbb{R}$.	Consider the complex numbers $u=2+3{\rm i}$ and $v=3+2{\rm i}$. [7 mark (a) Given that $\frac{1}{u}+\frac{1}{v}=\frac{10}{w}$, express w in the form $a+b{\rm i},a,b\in\mathbb{R}$.		[3 marks
Consider the complex numbers $u=2+3{\rm i}$ and $v=3+2{\rm i}$. [7 mark (a) Given that $\frac{1}{u}+\frac{1}{v}=\frac{10}{w}$, express w in the form $a+b{\rm i}, a,\ b\in\mathbb{R}$.	Consider the complex numbers $u=2+3{\rm i}$ and $v=3+2{\rm i}$. [7 mark (a) Given that $\frac{1}{u}+\frac{1}{v}=\frac{10}{w}$, express w in the form $a+b{\rm i},a,b\in\mathbb{R}$.	Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$.	
(a) Given that $rac{1}{u}+rac{1}{v}=rac{10}{w}$, express \emph{w} in the form $a+b\mathrm{i},a,b\in\mathbb{R}.$	(a) Given that $rac{1}{u}+rac{1}{v}=rac{10}{w}$, express \emph{w} in the form $a+b\mathbf{i},a,b\in\mathbb{R}.$	- 10	
(a) Given that $rac{1}{u}+rac{1}{v}=rac{10}{w}$, express \emph{w} in the form $a+b\mathrm{i},a,b\in\mathbb{R}.$	(a) Given that $rac{1}{u}+rac{1}{v}=rac{10}{w}$, express \emph{w} in the form $a+b\mathbf{i},a,b\in\mathbb{R}.$		
(a) Given that $rac{1}{u}+rac{1}{v}=rac{10}{w}$, express \emph{w} in the form $a+b\mathrm{i},a,b\in\mathbb{R}.$	(a) Given that $rac{1}{u}+rac{1}{v}=rac{10}{w}$, express \emph{w} in the form $a+b\mathbf{i},a,b\in\mathbb{R}.$		
(a) Given that $rac{1}{u}+rac{1}{v}=rac{10}{w}$, express \emph{w} in the form $a+b\mathrm{i},a,b\in\mathbb{R}.$	(a) Given that $rac{1}{u}+rac{1}{v}=rac{10}{w}$, express \emph{w} in the form $a+b\mathbf{i},a,b\in\mathbb{R}.$		
(a) Given that $rac{1}{u}+rac{1}{v}=rac{10}{w}$, express \emph{w} in the form $a+b\mathrm{i},a,b\in\mathbb{R}.$	(a) Given that $rac{1}{u}+rac{1}{v}=rac{10}{w}$, express \emph{w} in the form $a+b\mathbf{i},a,b\in\mathbb{R}.$		
(a) Given that $rac{1}{u}+rac{1}{v}=rac{10}{w}$, express \emph{w} in the form $a+b\mathrm{i},a,b\in\mathbb{R}.$	(a) Given that $rac{1}{u}+rac{1}{v}=rac{10}{w}$, express \emph{w} in the form $a+b\mathbf{i},a,b\in\mathbb{R}.$		
(a) Given that $rac{1}{u}+rac{1}{v}=rac{10}{w}$, express \emph{w} in the form $a+b\mathrm{i},a,b\in\mathbb{R}.$	(a) Given that $rac{1}{u}+rac{1}{v}=rac{10}{w}$, express \emph{w} in the form $a+b\mathbf{i},a,b\in\mathbb{R}.$		
(a) Given that $rac{1}{u}+rac{1}{v}=rac{10}{w}$, express \emph{w} in the form $a+b\mathrm{i},a,b\in\mathbb{R}.$	(a) Given that $rac{1}{u}+rac{1}{v}=rac{10}{w}$, express \emph{w} in the form $a+b\mathbf{i},a,b\in\mathbb{R}.$		
(b) Find w^* and express it in the form $re^{\mathrm{i} heta}$.	(b) Find w^* and express it in the form $re^{\mathrm{i} heta}$.		[7 marks
		(a) Given that $rac{1}{u}+rac{1}{v}=rac{10}{w}$, express \emph{w} in the form $a+b\mathbf{i},a,b\in\mathbb{R}.$	[7 marks
		(a) Given that $rac{1}{u}+rac{1}{v}=rac{10}{w}$, express \emph{w} in the form $a+b\mathbf{i},a,b\in\mathbb{R}.$	[7 mark
		(a) Given that $rac{1}{u}+rac{1}{v}=rac{10}{w}$, express \emph{w} in the form $a+b\mathbf{i},a,b\in\mathbb{R}.$	[7 mark
		(a) Given that $rac{1}{u}+rac{1}{v}=rac{10}{w}$, express \emph{w} in the form $a+b\mathbf{i},a,b\in\mathbb{R}.$	[7 mark
		(a) Given that $rac{1}{u}+rac{1}{v}=rac{10}{w}$, express \emph{w} in the form $a+b\mathbf{i},a,b\in\mathbb{R}.$	[7 mark.
		(a) Given that $rac{1}{u}+rac{1}{v}=rac{10}{w}$, express \emph{w} in the form $a+b\mathbf{i},a,b\in\mathbb{R}.$	[7 mark.
		(a) Given that $rac{1}{u}+rac{1}{v}=rac{10}{w}$, express \emph{w} in the form $a+b\mathbf{i},a,b\in\mathbb{R}.$	[7 mark

Express w^2 and w^3 in modulus-argument form.	[3 mark
. Sketch on an Argand diagram the points represented by w^0 , w^3 .	
w^3 .	
w ³ .	
w ³ .	
w ³ .	
w ³ .	
w ³ .	
W^3 .	
W^3 .	
w ³ .	
w ³ .	

now that the area of the quadrilateral Q is $rac{21\sqrt{3}}{2}$.	[3 mari

b^n -	that the are $(-1)\sin{\pi\over n}$, $(-1)\sin{\pi\over n}$	where a ,	$b\in\mathbb{R}.$	i n carr s	oc expic	3364 111 61	
					• • • • • • • • • •		