Complex numbers 29.4.2020 [41 marks] | $+ \ \mathrm{i} b$ where a , $b \in \mathbb{R}$. | [2 ma | |---|-------| | | | | | | | | | | | | | | | | | Consider the complex number $z= rac{2+7\mathrm{i}}{6+2\mathrm{i}}.$ | | |-----|--|-----------| | 2a. | Express z in the form $a+\mathrm{i} b$, where $a,b\in\mathbb{Q}.$ | [2 marks] | 2b. | Find the exact value of the modulus of z . | [2 marks] | 2c. | Find the argument of z , giving your answer to 4 decimal places. | [2 marks] | Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. | Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Consider the complex numbers $u=2+3\mathrm{i}$ and $v=3+2\mathrm{i}$. [7 mark (a) Given that $\frac{1}{u}+\frac{1}{v}=\frac{10}{w}$, express w in the form $a+b\mathrm{i},a,b\in\mathbb{R}$. | | | |---|---|---|----------| | Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. | Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Consider the complex numbers $u=2+3\mathrm{i}$ and $v=3+2\mathrm{i}$. [7 mark (a) Given that $\frac{1}{u}+\frac{1}{v}=\frac{10}{w}$, express w in the form $a+b\mathrm{i},a,b\in\mathbb{R}$. | | | | Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Consider the complex numbers $u=2+3\mathrm{i}$ and $v=3+2\mathrm{i}$. [7 mark (a) Given that $\frac{1}{u}+\frac{1}{v}=\frac{10}{w}$, express w in the form $a+b\mathrm{i},a,b\in\mathbb{R}$. | Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$.
Consider the complex numbers $u=2+3\mathrm{i}$ and $v=3+2\mathrm{i}$. [7 mark (a) Given that $\frac{1}{u}+\frac{1}{v}=\frac{10}{w}$, express w in the form $a+b\mathrm{i}, a, b\in\mathbb{R}$. | | | | Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Consider the complex numbers $u=2+3\mathrm{i}$ and $v=3+2\mathrm{i}$. [7 mark (a) Given that $\frac{1}{u}+\frac{1}{v}=\frac{10}{w}$, express w in the form $a+b\mathrm{i},a,b\in\mathbb{R}$. | Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Consider the complex numbers $u=2+3\mathrm{i}$ and $v=3+2\mathrm{i}$. [7 mark (a) Given that $\frac{1}{u}+\frac{1}{v}=\frac{10}{w}$, express w in the form $a+b\mathrm{i},a,b\in\mathbb{R}$. | | | | Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Consider the complex numbers $u=2+3\mathrm{i}$ and $v=3+2\mathrm{i}$. [7 mark (a) Given that $\frac{1}{u}+\frac{1}{v}=\frac{10}{w}$, express w in the form $a+b\mathrm{i},a,b\in\mathbb{R}$. | Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Consider the complex numbers $u=2+3\mathrm{i}$ and $v=3+2\mathrm{i}$. [7 mark (a) Given that $\frac{1}{u}+\frac{1}{v}=\frac{10}{w}$, express w in the form $a+b\mathrm{i},a,b\in\mathbb{R}$. | | | | Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Consider the complex numbers $u=2+3\mathrm{i}$ and $v=3+2\mathrm{i}$. [7 mark (a) Given that $\frac{1}{u}+\frac{1}{v}=\frac{10}{w}$, express w in the form $a+b\mathrm{i},a,b\in\mathbb{R}$. | Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Consider the complex numbers $u=2+3\mathrm{i}$ and $v=3+2\mathrm{i}$. [7 mark (a) Given that $\frac{1}{u}+\frac{1}{v}=\frac{10}{w}$, express w in the form $a+b\mathrm{i},a,b\in\mathbb{R}$. | | | | Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Consider the complex numbers $u=2+3\mathrm{i}$ and $v=3+2\mathrm{i}$. [7 mark (a) Given that $\frac{1}{u}+\frac{1}{v}=\frac{10}{w}$, express w in the form $a+b\mathrm{i},a,b\in\mathbb{R}$. | Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. Consider the complex numbers $u=2+3\mathrm{i}$ and $v=3+2\mathrm{i}$. [7 mark (a) Given that $\frac{1}{u}+\frac{1}{v}=\frac{10}{w}$, express w in the form $a+b\mathrm{i},a,b\in\mathbb{R}$. | | | | Consider the complex numbers $u=2+3{\rm i}$ and $v=3+2{\rm i}$. [7 mark (a) Given that $\frac{1}{u}+\frac{1}{v}=\frac{10}{w}$, express w in the form $a+b{\rm i}, a,\ b\in\mathbb{R}$. | Consider the complex numbers $u=2+3{\rm i}$ and $v=3+2{\rm i}$. [7 mark (a) Given that $\frac{1}{u}+\frac{1}{v}=\frac{10}{w}$, express w in the form $a+b{\rm i},a,b\in\mathbb{R}$. | | [3 marks | | Consider the complex numbers $u=2+3{\rm i}$ and $v=3+2{\rm i}$. [7 mark (a) Given that $\frac{1}{u}+\frac{1}{v}=\frac{10}{w}$, express w in the form $a+b{\rm i}, a,\ b\in\mathbb{R}$. | Consider the complex numbers $u=2+3{\rm i}$ and $v=3+2{\rm i}$. [7 mark (a) Given that $\frac{1}{u}+\frac{1}{v}=\frac{10}{w}$, express w in the form $a+b{\rm i},a,b\in\mathbb{R}$. | Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. | | | (a) Given that $ rac{1}{u}+ rac{1}{v}= rac{10}{w}$, express \emph{w} in the form $a+b\mathrm{i},a,b\in\mathbb{R}.$ | (a) Given that $ rac{1}{u}+ rac{1}{v}= rac{10}{w}$, express \emph{w} in the form $a+b\mathbf{i},a,b\in\mathbb{R}.$ | - 10 | | | (a) Given that $ rac{1}{u}+ rac{1}{v}= rac{10}{w}$, express \emph{w} in the form $a+b\mathrm{i},a,b\in\mathbb{R}.$ | (a) Given that $ rac{1}{u}+ rac{1}{v}= rac{10}{w}$, express \emph{w} in the form $a+b\mathbf{i},a,b\in\mathbb{R}.$ | | | | (a) Given that $ rac{1}{u}+ rac{1}{v}= rac{10}{w}$, express \emph{w} in the form $a+b\mathrm{i},a,b\in\mathbb{R}.$ | (a) Given that $ rac{1}{u}+ rac{1}{v}= rac{10}{w}$, express \emph{w} in the form $a+b\mathbf{i},a,b\in\mathbb{R}.$ | | | | (a) Given that $ rac{1}{u}+ rac{1}{v}= rac{10}{w}$, express \emph{w} in the form $a+b\mathrm{i},a,b\in\mathbb{R}.$ | (a) Given that $ rac{1}{u}+ rac{1}{v}= rac{10}{w}$, express \emph{w} in the form $a+b\mathbf{i},a,b\in\mathbb{R}.$ | | | | (a) Given that $ rac{1}{u}+ rac{1}{v}= rac{10}{w}$, express \emph{w} in the form $a+b\mathrm{i},a,b\in\mathbb{R}.$ | (a) Given that $ rac{1}{u}+ rac{1}{v}= rac{10}{w}$, express \emph{w} in the form $a+b\mathbf{i},a,b\in\mathbb{R}.$ | | | | (a) Given that $ rac{1}{u}+ rac{1}{v}= rac{10}{w}$, express \emph{w} in the form $a+b\mathrm{i},a,b\in\mathbb{R}.$ | (a) Given that $ rac{1}{u}+ rac{1}{v}= rac{10}{w}$, express \emph{w} in the form $a+b\mathbf{i},a,b\in\mathbb{R}.$ | | | | (a) Given that $ rac{1}{u}+ rac{1}{v}= rac{10}{w}$, express \emph{w} in the form $a+b\mathrm{i},a,b\in\mathbb{R}.$ | (a) Given that $ rac{1}{u}+ rac{1}{v}= rac{10}{w}$, express \emph{w} in the form $a+b\mathbf{i},a,b\in\mathbb{R}.$ | | | | (a) Given that $ rac{1}{u}+ rac{1}{v}= rac{10}{w}$, express \emph{w} in the form $a+b\mathrm{i},a,b\in\mathbb{R}.$ | (a) Given that $ rac{1}{u}+ rac{1}{v}= rac{10}{w}$, express \emph{w} in the form $a+b\mathbf{i},a,b\in\mathbb{R}.$ | | | | | | | | | (b) Find w^* and express it in the form $re^{\mathrm{i} heta}$. | (b) Find w^* and express it in the form $re^{\mathrm{i} heta}$. | | [7 marks | | | | (a) Given that $ rac{1}{u}+ rac{1}{v}= rac{10}{w}$, express \emph{w} in the form $a+b\mathbf{i},a,b\in\mathbb{R}.$ | [7 marks | | | | (a) Given that $ rac{1}{u}+ rac{1}{v}= rac{10}{w}$, express \emph{w} in the form $a+b\mathbf{i},a,b\in\mathbb{R}.$ | [7 mark | | | | (a) Given that $ rac{1}{u}+ rac{1}{v}= rac{10}{w}$, express \emph{w} in the form $a+b\mathbf{i},a,b\in\mathbb{R}.$ | [7 mark | | | | (a) Given that $ rac{1}{u}+ rac{1}{v}= rac{10}{w}$, express \emph{w} in the form $a+b\mathbf{i},a,b\in\mathbb{R}.$ | [7 mark | | | | (a) Given that $ rac{1}{u}+ rac{1}{v}= rac{10}{w}$, express \emph{w} in the form $a+b\mathbf{i},a,b\in\mathbb{R}.$ | [7 mark. | | | | (a) Given that $ rac{1}{u}+ rac{1}{v}= rac{10}{w}$, express \emph{w} in the form $a+b\mathbf{i},a,b\in\mathbb{R}.$ | [7 mark. | | | | (a) Given that $ rac{1}{u}+ rac{1}{v}= rac{10}{w}$, express \emph{w} in the form $a+b\mathbf{i},a,b\in\mathbb{R}.$ | [7 mark | | Express w^2 and w^3 in modulus-argument form. | [3 mark | |---|---------| . Sketch on an Argand diagram the points represented by w^0 , w^3 . | | | w^3 . | | | w ³ . | | | W^3 . | | | W^3 . | | | w ³ . | | | w ³ . | | | now that the area of the quadrilateral Q is $ rac{21\sqrt{3}}{2}$. | [3 mari | |---|---------| b^n - | that the are $(-1)\sin{\pi\over n}$, $(-1)\sin{\pi\over n}$ | where a , | $b\in\mathbb{R}.$ | i n carr s | oc expic | 3364 111 61 | | |---------|--|-------------|-------------------|------------|---------------------|-------------|------| | | | | | | | |
 | | | | | | | | |
 | | | | | | | | |
 | | | | | | | | |
 | | | | | | | | |
 | | | | | | | | |
 | | | | | | | | |
 | | | | | | | | |
 | | | | | | | | |
 | | | | | | | | |
 | | | | | | | • • • • • • • • • • | |
 | | | | | | | | |
 | | | | | | | | |
 | | | | | | | | |
 | | | | | | | | |
 |