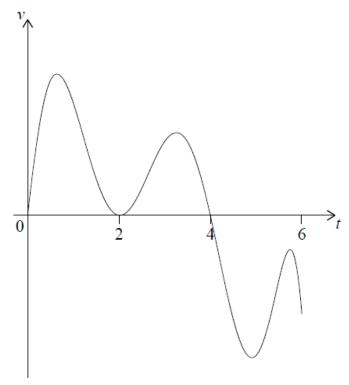
SL / velocity and acceleration

[77 marks]

A particle P starts from point O and moves along a straight line. The graph of its velocity, $v \, \text{ms}^{-1}$ after t seconds, for $0 \le t \le 6$, is shown in the following diagram.



The graph of v has t-intercepts when $t={\tt 0}$, 2 and 4.

The function $s\left(t\right)$ represents the displacement of P from O after t seconds.

It is known that P travels a distance of 15 metres in the first 2 seconds. It is also known that $s\left(2\right)=s\left(5\right)$ and $\int_{2}^{4}v\,\mathrm{d}t=9$.

1a. Find the value of s(4) - s(2).

[2 marks]

Markscheme

recognizing relationship between v and s (M1)

$$eg \quad \int v = s, \ s' = v$$

$$s(4) - s(2) = 9$$
 A1 N2

correctly interpreting distance travelled in first 2 seconds (seen anywhere, including part (a) or the area of 15 indicated on diagram) (A1)

eg
$$\int_0^2 v = 15$$
, $s(2) = 15$

valid approach to find total distance travelled (M1)

eg sum of 3 areas, $\int_0^4 v + \int_4^5 v$, shaded areas in diagram between 0 and 5

Note: Award **MO** if only $\int_0^5 |v|$ is seen.

correct working towards finding distance travelled between 2 and 5 (seen anywhere including within total area expression or on diagram) (A1)

$$eg \ \int_2^4 v - \int_4^5 v, \ \int_2^4 v = \int_4^5 |v|, \ \int_4^5 v \, \mathrm{d}t = -9, \ s\left(4\right) - s\left(2\right) - [s\left(5\right) - s\left(4\right)],$$

equal areas



correct working using $s\left(5\right)=s\left(2\right)$ (A1)

$$eg\ 15+9-(-9)$$
, $15+2\left[s\left(4\right)-s\left(2\right)
ight]$, $15+2\left(9\right)$, $2 imes s\left(4\right)-s\left(2\right)$, $48-15$

total distance travelled = 33 (m) A1 N2

[5 marks]

The population of fish in a lake is modelled by the function

$$f(t)=rac{1000}{1+24\mathrm{e}^{-0.2t}}$$
, $0\leq t\leq$ 30 , where t is measured in months.

2a. Find the population of fish at t = 10.

```
valid approach (M1)

eg f(10)

235.402

235 (fish) (must be an integer) A1 N2

[2 marks]
```

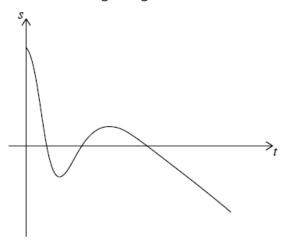
2b. Find the rate at which the population of fish is increasing at t = 10. [2 marks]

Markscheme

```
recognizing rate of change is derivative (M1) eg rate = f', f'(10), sketch of f', 35 (fish per month) 35.9976 36.0 (fish per month) A1 N2 [2 marks]
```

In this question distance is in centimetres and time is in seconds.

Particle A is moving along a straight line such that its displacement from a point P, after t seconds, is given by $s_{\rm A}=15-t-6t^3{\rm e}^{-0.8t}$, $0\le t\le 25$. This is shown in the following diagram.



valid approach $m{(M1)}$ $eg~s_{
m A}\left(0
ight),~s\left(0
ight),~t=0$ 15 (cm) $m{A1}$ $m{N2}$ $m{[2~marks]}$

3b. Find the value of t when particle A first reaches point P.

[2 marks]

Markscheme

valid approach $\it (M1)$ $\it eg~s_A=0,~s=0,~6.79321,~14.8651$ $\it 2.46941$ $\it t=2.47~(seconds)$ $\it A1~N2$ $\it [2~marks]$

3c. Find the value of t when particle A first changes direction.

[2 marks]

Markscheme

recognizing when change in direction occurs **(M1)** eg slope of s changes sign, s'=0, minimum point, 10.0144, (4.08, -4.66)
4.07702 t=4.08 (seconds) **A1 N2 [2 marks]**

3d. Find the total distance travelled by particle A in the first 3 seconds.

[3 marks]

METHOD 1 (using displacement)

correct displacement or distance from P at t=3 (seen anywhere) (A1)

eg -2.69630, 2.69630

valid approach (M1)

eg 15 + 2.69630, s(3) - s(0), -17.6963

17.6963

17.7 (cm) **A1 N2**

METHOD 2 (using velocity)

attempt to substitute either limits or the velocity function into distance formula involving $\left|v\right|$ (M1)

eg
$$\int_0^3 |v| \, \mathrm{d}t$$
 , $\int \left| -1 - 18t^2 \mathrm{e}^{-0.8t} + 4.8t^3 \mathrm{e}^{-0.8t} \right|$

17.6963

17.7 (cm) **A1 N2**

[3 marks]

Another particle, B, moves along the same line, starting at the same time as particle A. The velocity of particle B is given by $v_{\rm B}=8-2t$, $0 \le t \le 25$.

3e. Given that particles A and B start at the same point, find the displacement function $s_{\rm B}$ for particle B.

[5 marks]

recognize the need to integrate velocity (M1)

$$eg \int v(t)$$

$$8t - \frac{2t^2}{2} + c$$
 (accept x instead of t and missing c) (A2)

substituting initial condition into their integrated expression (must have c) (M1)

eg
$$15 = 8(0) - \frac{2(0)^2}{2} + c$$
, $c = 15$

$$s_{
m B}\left(t
ight) = 8t - t^2 + 15$$
 A1 N3

[5 marks]

3f. Find the other value of t when particles A and B meet.

[2 marks]

Markscheme

valid approach (M1)

 $eg~s_{\rm A}=s_{\rm B}$, sketch, (9.30404, 2.86710)

9.30404

t=9.30 (seconds) $m{A1}$ $m{N2}$

Note: If candidates obtain $s_{\rm B}(t)=8t-t^2$ in part (e)(i), there are 2 solutions for part (e)(ii), 1.32463 and 7.79009. Award the last **A1** in part (e)(ii) only if both solutions are given.

[2 marks]

A particle moves along a straight line so that its velocity, $v\,{\rm m\,s^{-1}}$, after t seconds is given by $v\,(t)=1.4^t-2.7$, for $0\le t\le 5$.

4a. Find when the particle is at rest.

valid approach (M1)

eg v(t) = 0, sketch of graph

2.95195

 $t=\log_{1.4}\!2.7\,$ (exact), $t=2.95\,$ (s) $\,$ **A1 N2**

[2 marks]

4b. Find the acceleration of the particle when t=2.

[2 marks]

Markscheme

valid approach (M1)

$$eg \quad a(t) = v'(t), \quad v'(2)$$

0.659485

$$a(2) = 1.96 \ln 1.4$$
 (exact), $a(2) = 0.659$ (m s⁻²) **A1 N2**

[2 marks]

4c. Find the total distance travelled by the particle.

[3 marks]

Markscheme

correct approach (A1)

eg
$$\int_{0}^{5}\left|v\left(t\right)\right|\,\mathrm{d}t$$
, $\int_{0}^{2.95}\left(-v\left(t\right)\right)\,\mathrm{d}t+\int_{295}^{5}v\left(t\right)\,\mathrm{d}t$

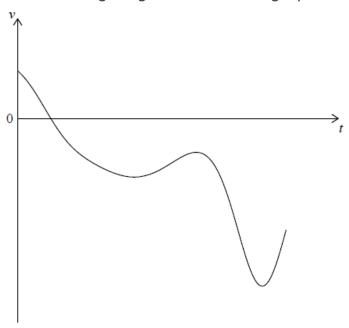
5.3479

distance = 5.35 (m) *A2 N3*

[3 marks]

A particle P moves along a straight line. The velocity $vm s^{-1}$ of P after t seconds is given by $v(t) = 7 \cos t - 5 t^{\cos t}$, for $0 \le t \le 7$.

The following diagram shows the graph of ν .



5a. Find the initial velocity of P.

[2 marks]

Markscheme

initial velocity when t = 0 (M1) eg $\nu(0)$ $\nu = 17 \text{ (m s}^{-1})$ A1 N2

[2 marks]

5b. Find the maximum speed of P.

[3 marks]

Markscheme

recognizing maximum speed when |v| is greatest **(M1)** eg minimum, maximum, v' = 0one correct coordinate for minimum **(A1)** eg 6.37896, -24.657124.7 (ms⁻¹) **A1 N2 [3 marks]**

5c. Write down the number of times that the acceleration of P is 0 m s^{-2} . [3 marks]

Markscheme

recognizing a = v' (M1)

eg $a=rac{\mathrm{d}v}{\mathrm{d}t}$, correct derivative of first term

identifying when a = 0 (M1)

eg turning points of v, t-intercepts of v'

3 **A1 N3**

[3 marks]

5d. Find the acceleration of P when it changes direction.

[4 marks]

Markscheme

recognizing P changes direction when v = 0 (M1)

t = 0.863851 (A1)

-9.24689

 $a = -9.25 \text{ (ms}^{-2})$ **A2 N3**

[4 marks]

5e. Find the total distance travelled by P.

[3 marks]

Markscheme

correct substitution of limits or function into formula (A1)

$$eg \int_0^7 |v|, \int_0^{0.8638} v dt - \int_{0.8638}^7 v dt, \int |7\cos x - 5x^{\cos x}| dx, 3.32 = 60.6$$

63.8874

63.9 (metres) *A2 N3*

[3 marks]

Note: In this question, distance is in metres and time is in seconds.

A particle P moves in a straight line for five seconds. Its acceleration at time t is given by $a=3t^2-14t+8$, for $0\leqslant t\leqslant 5$.

6a. Write down the values of t when a=0.

[2 marks]

Markscheme

$$t = \frac{2}{3} \; (\mathrm{exact}), \, 0.667, \; t = 4$$
 A1A1 N2

[2 marks]

6b. Hence or otherwise, find all possible values of t for which the velocity of $\[2\]$ P is decreasing.

Markscheme

 $ega < 0, \ 3t^2 - 14t + 8 \leqslant 0$, sketch of a

correct interval A1 N2

 $eg\frac{2}{3} < t < 4$

[2 marks]

When t=0, the velocity of P is $3 \mathrm{m \, s^{-1}}$.

6c. Find an expression for the velocity of P at time t.

[6 marks]

valid approach (do not accept a definite integral) $\it (M1)$ $\it egv \int a$ correct integration (accept missing $\it c$) $\it (A1)(A1)(A1)$ $\it t^3-7t^2+8t+c$ substituting $\it t=0,\ v=3$, (must have $\it c$) $\it (M1)$ $\it eg3=0^3-7(0^2)+8(0)+c,\ c=3$ $\it v=t^3-7t^2+8t+3$ $\it A1$ $\it N6$ $\it [6 marks]$

6d. Find the total distance travelled by P when its velocity is increasing. [4 marks]

Markscheme

recognizing that v increases outside the interval found in part (b) $\hspace{0.2in}$ (M1)

 $\mathit{eg}0 < t < \frac{2}{3}, \; 4 < t < 5$, diagram

one correct substitution into distance formula (A1)

$$eg \int_{0}^{rac{2}{3}} |v| \, , \; \; \int_{4}^{5} |v| \, , \; \; \int_{rac{2}{3}}^{4} |v| \, , \; \; \int_{0}^{5} |v|$$

one correct pair (A1)

eg3.13580 and 11.0833, 20.9906 and 35.2097

14.2191 *A1 N2*

d = 14.2 (m)

[4 marks]

A particle P moves along a straight line so that its velocity, $v\,\mathrm{ms}^{-1}$, after t seconds, is given by $v=\cos 3t-2\sin t-0.5$, for $0\leqslant t\leqslant 5$. The initial displacement of P from a fixed point O is 4 metres.

7a. Find the displacement of P from O after 5 seconds.

[5 marks]

METHOD 1

recognizing $s = \int v$ (M1)

recognizing displacement of P in first 5 seconds (seen anywhere) $m{A1}$ (accept missing $\mathrm{d}t$)

$$eg \int_0^5 v dt$$
, -3.71591

valid approach to find total displacement (M1)

$$eg4 + (-3.7159), s = 4 + \int_0^5 v$$

0.284086

0.284 (m) **A2 N3**

METHOD 2

recognizing $s=\int v$ (M1)

correct integration A1

 $egrac{1}{3}\sin 3t + 2\cos t - rac{t}{2} + c$ (do not penalize missing "c")

attempt to find c (M1)

eg

$$4 = \frac{1}{3}\sin(0) + 2\cos(0) - \frac{0}{2} + c, \ 4 = \frac{1}{3}\sin 3t + 2\cos t - \frac{t}{2} + c, \ 2 + c = 4$$

attempt to substitute t=5 into their expression with c $\ensuremath{\textit{(M1)}}$

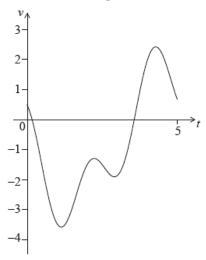
$$egs(5), \frac{1}{3}sin(15) + 2cos(5)5 - -\frac{5}{2} + 2$$

0.284086

0.284 (m) **A1 N3**

[5 marks]

The following sketch shows the graph of v.



7b. Find when P is first at rest.

[2 marks]

Markscheme

recognizing that at rest, v=0 (M1)

t = 0.179900

 $t = 0.180 \, ({
m secs})$ A1 N2

[2 marks]

7c. Write down the number of times P changes direction.

[2 marks]

Markscheme

recognizing when change of direction occurs (M1)

 ${\it egv}$ crosses t axis

2 (times) **A1 N2**

[2 marks]

7d. Find the acceleration of P after 3 seconds.

```
acceleration is v' (seen anywhere) \it (M1) \it egv'(3) 0.743631 \it 0.744~(ms^{-2}) \it A1~N2 \it [2 marks]
```

7e. Find the maximum speed of P.

[3 marks]

Markscheme

valid approach involving max or min of v (M1) $egv'=0,\ a=0$, graph one correct co-ordinate for min (A1) $eg1.14102,\ -3.27876$ 3.28 (ms $^{-1}$) A1 N2 [3 marks]

© International Baccalaureate Organization 2021 International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional®

Printed for JOENSUUN LYSEON LUKIO