Measuring change: differentiation

Skills check

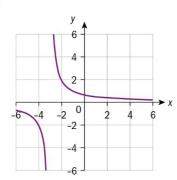
1 a
$$\frac{-3-0}{-4-0} = \frac{3}{4}$$

b
$$\frac{-1-2}{4-\left(-\frac{3}{4}\right)}=-\frac{12}{19}$$

2 a
$$7\sqrt{x} = 7x^{\frac{1}{2}}$$

b
$$\frac{1}{x^2} = x^{-2}$$

$$c \quad \frac{8}{5\sqrt{x^3}} = \frac{8}{5}x^{-\frac{3}{2}}$$



4 Since
$$|\frac{1}{2}| < 1$$
,

$$\sum_{n=0}^{\infty} 5 \left(\frac{1}{2}\right)^n = 5 \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n = \frac{5(1)}{1 - \frac{1}{2}} = 10$$

Exercise 5A

$$\lim_{x \to 3^{-}} \left(x^2 + 1 \right) = \lim_{x \to 3^{+}} \left(x^2 + 1 \right) = 10$$

$$\lim_{x \to 1^{-}} (5 - 2x) = \lim_{x \to 1^{+}} (5 - 2x) = 3$$

3
$$\lim_{x\to 0^-} \left(\frac{2x^2-x}{x}\right) = \lim_{x\to 0^+} \left(\frac{2x^2-x}{x}\right) = -1$$

4
$$\lim_{x \to 1^{-}} \left(\frac{x^2 - x}{x - 1} \right) = \lim_{x \to 1^{+}} \left(\frac{x^2 - x}{x - 1} \right) = 1$$

Exercise 5B

1 Vertical asymptote at
$$x = \frac{1}{6}$$

since
$$\lim_{x \to \frac{1}{6}^-} f(x) = -\infty$$
 and $\lim_{x \to \frac{1}{6}^+} f(x) = \infty$

Horizontal asymptote at $y = \frac{1}{2}$

since
$$\lim_{x \to \pm \infty} f(x) = \frac{1}{2}$$

2 Vertical asymptotes at
$$x = \pm \sqrt{3}$$

since
$$\lim_{x \to -\sqrt{3}^-} = -\infty$$
 and $\lim_{x \to -\sqrt{3}^+} = \infty$

and
$$\lim_{x\to\sqrt{3}^-} = \infty$$
 and $\lim_{x\to\sqrt{3}^+} = -\infty$

Horizontal asymptote at y = -1since $\lim_{x\to\pm\infty} g(x) = -1$

3 Vertical asymptote at x = 1

since
$$\lim_{x\to 1^-} f(x) = \infty$$
 and $\lim_{x\to 1^+} f(x) = -\infty$

Horizontal asymptote at y = -1since $\lim_{x \to 0} h(x) = -1$

4 Vertical asymptotes at $x = \pm \sqrt{2}$

since
$$\lim_{x \to -\sqrt{2}^-} = \infty$$
 and $\lim_{x \to -\sqrt{2}^+} = -\infty$

and
$$\lim_{x\to\sqrt{2}^-} = \infty$$
 and $\lim_{x\to\sqrt{2}^+} = -\infty$

Horizontal asymptote at y = 0

since
$$\lim_{x\to\pm\infty} \left(-\frac{5x}{x^2-2}\right) = 0$$

Exercise 5C

1
$$f'(x) = 7x^{7-1} = 7x^6$$

2
$$f'(x) = 18x^{18-1} = 18x^{17}$$

3
$$f'(x) = -\frac{1}{2}x^{-\frac{1}{2}-1} = -\frac{1}{2}x^{-\frac{3}{2}}$$

4
$$f(x) = \sqrt[5]{x} = x^{\frac{1}{5}} \Rightarrow f'(x) = \frac{1}{5}x^{\frac{1}{5}-1} = \frac{1}{5}x^{-\frac{4}{5}}$$

5
$$f(x) = \frac{1}{\sqrt{x}} = x^{-\frac{1}{2}} \Rightarrow f'(x) = -\frac{1}{2}x^{-\frac{1}{2}-1} = -\frac{1}{2}x^{-\frac{3}{2}}$$

6
$$f(x) = \sqrt[4]{x^3} = x^{\frac{3}{4}} \Rightarrow f'(x) = \frac{3}{4}x^{\frac{3}{4}-1} = \frac{3}{4}x^{-\frac{1}{4}}$$

Exercise 5D

1 a
$$\frac{dy}{dx} = 4x^3 - x$$

b
$$f(x) = 5x(x^2 - 1) = 5x^3 - 5x$$

 $\therefore f'(x) = 15x^2 - 5$

c
$$f'(x) = 24x^3 - 6x$$
 d $\frac{ds}{dt} = 4t + 3$

d
$$\frac{ds}{dt} = 4t + 3$$

e
$$\frac{dv}{dt} = -9.8$$
 f $\frac{dc}{dx} = 24$

$$\mathbf{f} \quad \frac{\mathrm{d}c}{\mathrm{d}x} = 24$$

2 a
$$f(x) = 6\sqrt{x} = 6x^{\frac{1}{2}} : f'(x) = 3x^{-\frac{1}{2}}$$

b
$$f(x) = 5\sqrt[5]{x^3} = 5x^{\frac{3}{5}}$$
 : $f'(x) = 3x^{-\frac{2}{5}}$

c
$$f(x) = \frac{2}{x} - 3\sqrt{x} = 2x^{-1} - 3x^{\frac{1}{2}}$$

$$\therefore f'(x) = -2x^{-2} - \frac{3}{2}x^{-\frac{1}{2}}$$

3 a
$$f(x) = \frac{3}{2x^2} = \frac{3}{2}x^{-2}$$
 : $f'(x) = -3x^{-3}$

b
$$f(x) = \frac{3}{(2x)^2} = \frac{3}{4x^2} = \frac{3}{4}x^{-2}$$

$$\therefore f'(x) = -\frac{3}{2}x^{-3}$$

c
$$f'(x) = 12\pi x^2$$

d
$$f(x) = (x+1)^2 = x^2 + 2x + 1$$

$$\therefore f'(x) = 2x + 2$$

e
$$f(x) = \frac{x^3 + x - 3}{x} = x^2 + 1 - \frac{3}{x}$$

$$= x^2 + 1 - 3x^{-1} : f'(x) = 2x + 3x^{-2}$$

f
$$f(x) = (2x-1)(x^2+3)$$

$$=2x^3-x^2+6x-3$$

$$\therefore f'(x) = 6x^2 - 2x + 6$$

4 a
$$y = 1 + x\sqrt{x} = 1 + x^{\frac{3}{2}}$$
 $\therefore \frac{dy}{dx} = \frac{3}{2}x^{\frac{1}{2}}$

b
$$y = \frac{7}{x^2} - \frac{1}{\sqrt{x}} = 7x^{-2} - x^{-\frac{1}{2}}$$

$$\frac{dy}{dx} = -14x^{-3} + \frac{1}{2}x^{-\frac{3}{2}}$$

c
$$V = \sqrt[3]{X} + \sqrt[4]{X} = X^{\frac{1}{3}} + X^{\frac{1}{4}}$$

$$\therefore \frac{dy}{dx} = \frac{1}{3} x^{-\frac{2}{3}} + \frac{1}{4} x^{-\frac{3}{4}}$$

Exercise 5E

1 a
$$\frac{dy}{dx} = 2x - 4$$
 so the gradient at

$$x = -1$$
 is $2(-1) - 4 = -6$

b
$$y = \frac{2x^5 - 5}{x} = 2x^4 - \frac{5}{x} = 2x^4 - 5x^{-1}$$

$$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = 8x^3 + 5x^{-2}$$

so the gradient at (1, -3) is

$$8(1)^3 + 5(1)^{-2} = 13$$

c
$$f(x) = \sqrt[4]{x} + \frac{8}{\sqrt{x}} = x^{\frac{1}{4}} + 8x^{-\frac{1}{2}}$$

$$\therefore f'(x) = \frac{1}{4}x^{-\frac{3}{4}} - 4x^{-\frac{3}{2}}$$

so
$$f'(1) = \frac{1}{4}(1)^{-\frac{3}{4}} - 4(1)^{-\frac{3}{2}} = -\frac{15}{4}$$

2
$$f'(x) = 2x^2 - 9x - 3$$
 : $2 = 2x^2 - 9x - 3$

$$\Rightarrow 2x^2 - 9x - 5 = (2x + 1)(x - 5) = 0$$

so
$$x = -\frac{1}{2}$$
 or $x = 5$

when
$$x = -\frac{1}{2}$$
, $y = f\left(-\frac{1}{2}\right) = \frac{199}{24}$

when
$$x = 5$$
, $y = f(5) = -\frac{217}{6}$

so
$$\left(-\frac{1}{2}, \frac{199}{24}\right)$$
 and $\left(5, -\frac{217}{6}\right)$

Exercise 5F

1
$$y = \frac{1-2x}{x^2} = \frac{1}{x^2} - \frac{2}{x} = x^{-2} - 2x^{-1}$$

$$\therefore \frac{dy}{dx} = -2x^{-3} + 2x^{-2}$$

Therefore, the gradient at $\left(2, -\frac{3}{4}\right)$

is
$$-2(2)^{-3} + 2(2)^{-2} = \frac{1}{4}$$

So the gradient of the normal at

$$\therefore y - \left(-\frac{3}{4}\right) = -4(x-2) \Rightarrow y = -4x + \frac{29}{4}$$

2
$$\frac{dy}{dx} = -3x^2 + 4x$$

So the gradient at x = -1 is -7

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -7 \Rightarrow 3x^2 - 4x - 7$$

$$= (3x-7)(x+1) = 0$$

$$\therefore x = \frac{7}{3}$$
 or $x = -1$ (i.e. the tangent itself)

$$y\left(\frac{7}{3}\right) = -\frac{22}{27}$$

$$\therefore y + \frac{22}{27} = -7\left(x - \frac{7}{3}\right) \Rightarrow y = -7x + \frac{419}{27}$$

3
$$\frac{dy}{dx} = 1 - \frac{1}{x^2}$$
$$\frac{dy}{dx} = -3 \Rightarrow 1 - \frac{1}{x^2} = -3 \Rightarrow x = \pm \frac{1}{2}$$
$$y\left(\pm \frac{1}{2}\right) = \pm \frac{5}{2}$$

Gradient of normal is
$$\frac{1}{3}$$

$$\therefore y - \left(\pm \frac{5}{2}\right) = \frac{1}{3} \left(x - \left(\pm \frac{1}{2}\right)\right)$$

$$\Rightarrow y = \frac{1}{3}x \pm \frac{5}{2} \text{ m} \frac{1}{6}$$

$$\therefore y = \frac{1}{3}x + \frac{7}{3} \text{ and } y = \frac{1}{3}x - \frac{7}{3}$$

4
$$f'(x) = 6x - 2k$$

 $f'(1) = 6 - 2k = 10 \Rightarrow k = -2$

5
$$f'(x) = 3x^2 - 2x - 2 = 0$$

$$\Rightarrow x^2 - \frac{2}{3}x - \frac{2}{3} = \left(x - \frac{1}{3}\right)^2 = \frac{7}{9}$$

$$\therefore x = \frac{1 \pm \sqrt{7}}{3}$$

Coordinates are

$$\left(\frac{1+\sqrt{7}}{3}, \frac{7-14\sqrt{7}}{27}\right), \left(\frac{1-\sqrt{7}}{3}, \frac{7+14\sqrt{7}}{27}\right)$$

6
$$g(x) = \frac{1}{x^n} = x^{-n}$$
 : $g'(x) = -nx^{-n-1}$

$$\Rightarrow xg'(x) + ng(x) = x(-nx^{-n-1}) + nx^{-n}$$

$$= -nx^{-n} + nx^{-n} = 0$$

7 **a**
$$f'(x) = 15ax^2 - 4bx + 4c$$

b
$$f'(x) \ge 0 \Rightarrow 15ax^2 - 4bx + 4c \ge 0$$
$$\Rightarrow x^2 - \frac{4b}{15a}x + \frac{4c}{15a} \ge 0$$
$$\Rightarrow \left(x - \frac{2b}{15a}\right)^2 - \frac{4b^2}{225a^2} + \frac{4c}{15a} \ge 0$$

The LHS is valid for all real x and attains its minimum at $x = \frac{2b}{15a}$ so

$$-\frac{4b^2}{225a^2} + \frac{4c}{15a} \ge 0 \Rightarrow b^2 \le 15ac$$

8
$$f(x) = -20x^{-1} + 1$$
 for $x > 0$
 $\therefore f'(x) = 20x^{-2}, g'(x) = 5$ for $x \in i$
 $f'(x) = g'(x)$ when $20x^{-2} = 5$
 $\Rightarrow x^2 = 4 \Rightarrow x = \pm 2$
But $x > 0$ so $x = 2$ only

Exercise 5G

1 a
$$y = u^5$$
 where $u = 2x + 3$

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} = (5u^4)(2) = 10u^4$$

$$= 10(2x + 3)^4$$

b
$$y = \sqrt{1 - 2x} = (1 - 2x)^{\frac{1}{2}}$$

 $y = u^{\frac{1}{2}}$ where $u = 1 - 2x$
 $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} = (\frac{1}{2}u^{-\frac{1}{2}})(-2)$
 $= -u^{-\frac{1}{2}} = -(1 - 2x)^{-\frac{1}{2}}$

c
$$y = -\frac{3}{\sqrt{2x^2 - 1}} = -3u^{-\frac{1}{2}}$$

where $u = 2x^2 - 1$

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} = \left(\frac{3}{2}u^{-\frac{3}{2}}\right)(4x)$$

$$= 6x(2x^2 - 1)^{-\frac{3}{2}}$$

d
$$y = 2\left(x^2 - \frac{2}{x}\right)^3 = 2u^3$$

where $u = x^2 - \frac{2}{x}$
 $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} = (6u^2)\left(2x + \frac{2}{x^2}\right)$
 $= 12\left(x^2 - \frac{2}{x}\right)^2 \left(x + \frac{1}{x^2}\right)$

2 At
$$x = 0$$
, $y = 6$ so tangent passes through $(0,6)$

$$y = 6(1-2x)^{\frac{1}{3}} = 6u^{\frac{1}{3}} \text{ where } u = 1-2x$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} = \left(2u^{-\frac{2}{3}}\right)(-2) = -4u^{-\frac{2}{3}}$$

$$= -4(1-2x)^{-\frac{2}{3}}$$
so the gradient at $x = 0$ is -4

$$\therefore y - 6 = -4(x - 0) \Rightarrow y = -4x + 6$$

3 When
$$x = 1$$
, $y = 1$ so $a = \sqrt{1 + b}$

$$y = a(1+bx)^{-\frac{1}{2}} = au^{-\frac{1}{2}}$$
 where $u = 1+bx$

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} = \left(-\frac{a}{2}u^{-\frac{3}{2}}\right)(b) = -\frac{ab}{2}u^{-\frac{3}{2}}$$
$$-\frac{ab}{2}(1+bx)^{-\frac{3}{2}}$$

$$=-\frac{ab}{2}\big(1+bx\big)^{-\frac{3}{2}}$$

At
$$(1,1)$$
, $\frac{dy}{dx} = -\frac{3}{8}$

$$\Rightarrow -\frac{ab}{2}(1+b)^{-\frac{3}{2}} = -\frac{b}{2a^2} = -\frac{3}{8}$$

so
$$b = \frac{3a^2}{4}$$

$$\Rightarrow a = \sqrt{1 + \frac{3a^2}{4}} \Rightarrow a^2 = 1 + \frac{3a^2}{4}$$

$$\Rightarrow a = 2 \quad (a > 0) : b = a^2 - 1 = 3$$

4
$$y = \frac{4}{(3-x)^3} = 4u^{-3}$$
 where $u = 3-x$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} = (-12u^{-4})(-1) = 12u^{-4}$$
$$= 12(3-x)^{-4}$$

so at
$$x = 1$$
, $\frac{dy}{dx} = \frac{3}{4}$ and therefore

the normal has gradient
$$-\frac{4}{3}$$

$$\therefore y - \frac{1}{2} = -\frac{4}{3}(x - 1) \Rightarrow y = -\frac{4}{3}x + \frac{11}{6}$$

5
$$\frac{dy}{dx} = -9x^2 + 2$$

Curve horizontal when $\frac{dy}{dx} = 0$

So
$$x = \pm \sqrt{\frac{2}{9}} = \pm \frac{\sqrt{2}}{3}$$

Exercise 5H

1 a
$$y = x^2(2x - 1) = uv$$
 where $u = x^2$

and
$$v = 2x - 1$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}u}{\mathrm{d}x}v + u\frac{\mathrm{d}v}{\mathrm{d}x}$$

$$=(2x)(2x-1)+x^2(2)$$

$$=6x^2-2x=2x(3x-1)$$

b
$$y = (2x-3)(x+3)^3 = uv$$
 where

$$u = 2x - 3$$
 and $v = (x + 3)^3$

$$\frac{dy}{dx} = \frac{du}{dx}v + u\frac{dv}{dx}$$

=
$$(2)(x+3)^3 + (2x-3)(3(x+3)^2)$$

$$=(x+3)^2(8x-3)$$

c
$$y = x\sqrt{2-3x} = uv$$
 where $u = x$

and
$$v = \sqrt{2 - 3x}$$

$$\frac{dy}{dx} = \frac{du}{dx}v + u\frac{dv}{dx}$$

$$=(1)\sqrt{2-3x}+x\left(-\frac{3}{2\sqrt{2-3x}}\right)$$

$$=\frac{4-9x}{2\sqrt{2-3x}}$$

d
$$y = (2x+1)(x^2-x+1)^2 = uv$$
 where

$$u = 2x + 1$$
 and $v = (x^2 - x + 1)^2$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}u}{\mathrm{d}x}v + u\frac{\mathrm{d}v}{\mathrm{d}x}$$

$$=(2)(x^2-x+1)^2$$

$$+2(2x+1)(2x-1)(x^2-x+1)$$

$$=2x(5x-1)(x^2-x+1)$$

e
$$y = (2-3x)\sqrt{x+2} = uv$$

where
$$u = 2 - 3x$$
 and $v = \sqrt{x + 2}$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}u}{\mathrm{d}x}v + u\frac{\mathrm{d}v}{\mathrm{d}x}$$

$$= (-3)\sqrt{x+2} + (2-3x)\left(\frac{1}{2\sqrt{x+2}}\right)$$

$$=\frac{-10-9x}{2\sqrt{x+2}}$$

2 a
$$y = \sqrt{x+1}(3-x)^2 = uv$$
 where

$$u = \sqrt{x+1}$$
 and $v = (3-x)^2$

$$\frac{dy}{dx} = \frac{du}{dx}v + u\frac{dv}{dx}$$

$$= \left(\frac{1}{2\sqrt{x+1}}\right) (3-x)^2 + \sqrt{x+1} \left(-2(3-x)\right)$$

$$\therefore \frac{dy}{dx} = \frac{\left(x-3\right)^2 + 4\left(x-3\right)\left(x+1\right)}{2\sqrt{x+1}}$$

$$= \frac{(x-3)(x-3+4(x+1))}{2\sqrt{x+1}}$$

$$=\frac{2\sqrt{x+1}}{2\sqrt{x+1}}$$

$$x-3=0 \Rightarrow x=3$$

or
$$5x + 1 = 0 \Rightarrow x = -\frac{1}{5}$$

3
$$y = x (1 - 2x)^{-1} = uv$$
 where $u = x$
and $v = (1 - 2x)^{-1}$

$$\frac{dy}{dx} = \frac{du}{dx}v + u\frac{dv}{dx}$$

$$= (1)(1 - 2x)^{-1} + x(2(1 - 2x)^{-2}) = \frac{1}{(1 - 2x)^2}$$

so the gradient at (0,0) is 1 and the normal therefore has gradient -1 $\therefore y = -x$

Exercise 5I

1 a
$$y = \frac{1+3x}{5-x} = \frac{u}{v}$$
 where $u = 1+3x$
and $v = 5-x$, $u' = 3, v' = -1$

$$\frac{dy}{dx} = \frac{vu'-uv'}{v^2}$$

$$= \frac{(5-x)(3)-(1+3x)(-1)}{(5-x)^2} = \frac{16}{(5-x)^2}$$

$$\mathbf{b} \quad y = \frac{\sqrt{x}}{2 - x} = \frac{u}{v} \quad \text{where } u = \sqrt{x}$$
and $v = 2 - x$

$$u' = \frac{1}{2\sqrt{x}}, v' = -1$$

$$\frac{dy}{dx} = \frac{vu' - uv'}{v^2}$$

$$= \frac{(2 - x)\left(\frac{1}{2\sqrt{x}}\right) - \left(\sqrt{x}\right)(-1)}{(2 - x)^2}$$

$$= \frac{2 + x}{2(2 - x)^2\sqrt{x}}$$

c
$$y = \frac{1+2x}{\sqrt{1-x^2}} = \frac{u}{v}$$
 where $u = 1+2x$
and $v = \sqrt{1-x^2}$
 $u' = 2, v' = -\frac{x}{\sqrt{1-x^2}}$
 $\frac{dy}{dx} = \frac{vu'-uv'}{v^2}$
 $= \frac{\sqrt{1-x^2}(2)-(1+2x)(-\frac{x}{\sqrt{1-x^2}})}{1-x^2}$
 $= \frac{x+2}{(1-x^2)^{\frac{3}{2}}}$

d
$$y = \frac{1+3x}{x^2+1} = \frac{u}{v}$$
 where $u = 1+3x$
and $v = x^2+1$

$$\frac{dy}{dx} = \frac{vu'-uv'}{v^2}$$

$$= \frac{(x^2+1)(3)-(1+3x)(2x)}{(x^2+1)^2}$$

$$= \frac{3-2x-3x^2}{(x^2+1)^2}$$

2
$$f'(x) = \frac{-3x^2 + 4x + 3}{(x+1)^2}, f'(0) = 3$$

so normal at this point has gradient $-\frac{1}{3}$ and passes through (0, -2) $\therefore y = -\frac{1}{3}x - 2$

3
$$f(x) = \frac{x^3 + x^2 + x + 1}{x} = \frac{u}{v}$$

where $u = x^3 + x^2 + x + 1$ and $v = x$
 $f'(x) = \frac{vu' - uv'}{v^2}$
 $= \frac{x(3x^2 + 2x + 1) - (x^3 + x^2 + x + 1)(1)}{x^2}$
 $= \frac{2x^3 + x^2 - 1}{x^2}$
 $f'(x) = 1 \Rightarrow 2x^3 + x^2 - 1 = x^2 \Rightarrow x^3 = \frac{1}{2}$
 $\therefore x = \frac{1}{\sqrt[3]{2}}$

Exercise 5J

1 a

$$y = (x-1)(x+3)^2 = uv$$
 where
 $u = x-1$ and $v = (x+3)^2$

$$\frac{dy}{dx} = \frac{du}{dx}v + u\frac{dv}{dx}$$

$$= (x+3)^2 + 2(x-1)(x+3)$$

$$= (x+3)(x+3+2(x-1))$$

$$= (x+3)(3x+1)$$

b Most easily done using the product (and chain) rule: $y = (x+1)\sqrt{1-2x} = uv$ where u = x+1 and $v = \sqrt{1-2x}$ $\frac{dy}{dx} = \frac{du}{dx}v + u\frac{dv}{dx}$ $= \sqrt{1-2x} - \frac{x+1}{\sqrt{1-2x}} = -\frac{3x}{\sqrt{1-2x}}$ **c** Most easily done using the quotient rule:

$$y = \frac{x+1}{x-1} = \frac{u}{v} \quad \text{where} \quad u = x+1$$

and
$$v = x - 1$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{vu' - uv'}{v^2}$$

$$=\frac{(x-1)-(x+1)}{(x-1)^2}=-\frac{2}{(x-1)^2}$$

d Most easily done by chain rule (quotient rule also valid)

$$y = 2(x^4 - 2x + 1)^{-1} = 2u^{-1}$$

where
$$u = x^4 - 2x + 1$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u}\frac{\mathrm{d}u}{\mathrm{d}x} = \left(-\frac{2}{u^2}\right)\left(4x^3 - 2\right)$$

$$=\frac{4(1-2x^3)}{(x^4-2x+1)^2}$$

2
$$f(x) = \frac{1 + \sqrt{x}}{x - 1} = \frac{u}{v}$$
 where $u = 1 + \sqrt{x}$

and
$$v = x - 1$$

$$f'(x) = \frac{vu' - uv'}{v^2} = \frac{\frac{x-1}{2\sqrt{x}} - (1+\sqrt{x})}{(x-1)^2}$$

$$= -\frac{x + 2\sqrt{x} + 1}{2\sqrt{x}(x - 1)^{2}} = -\frac{\left(\sqrt{x} + 1\right)^{2}}{2\sqrt{x}(x - 1)^{2}}$$

$$f'(9) = -\frac{(3+1)^2}{2(3)(9-1)^2} = -\frac{1}{24}$$

Tangent:
$$y - \frac{1}{2} = -\frac{1}{24}(x - 9)$$

$$\Rightarrow y = \frac{7}{8} - \frac{x}{24}$$

Normal:
$$y - \frac{1}{2} = 24(x - 9)$$

$$\Rightarrow y = 24x - \frac{431}{2}$$

Exercise 5K

1 a i
$$x > 0$$

ii Nowhere

b i
$$X \in (-\infty, -1) \cup (-1, 0) \square$$

ii
$$x \in (0,1) \cup (1,\infty)$$

c i
$$X \in (-\infty, -0.215) \cup (1.55, \infty)$$

ii
$$x \in (-0.215, 1.55)$$

d i
$$X \in (-\infty, -1) \cup (1, \infty)$$

ii
$$x \in (-1,1)$$

2 a
$$f'(x) = -3x^2$$

Increasing: nowhere

Decreasing: $\forall x \in i$

b
$$f'(x) = 4x$$

Increasing: x > 0

Decreasing: x < 0

c
$$f'(x) = -\frac{1}{2\sqrt{x-1}}$$

Increasing: nowhere

(note the function is only valid here

for x > 1)

Decreasing: $x \in (1, \infty)$

d
$$f'(x) = \frac{1}{2\sqrt{x}} - 2$$

Increasing: $x \in \left(0, \frac{1}{16}\right)$

(note the function is only valid here

for x > 0)

Decreasing: $x \in \left(\frac{1}{16}, \infty\right)$

Exercise 5L

1 a f'(x) = 2x, $f'(x) = 0 \Rightarrow x = 0$

f(x) decreasing for x < 0 and increasing for x > 0 so this is a

local minimum

 \therefore (0,-2) is a local minimum point Graphically, this is a positive parabola so the turning point must be a local minimum (students should draw this)

b
$$f'(x) = 1 - \frac{1}{\sqrt{x}}, \ f'(x) = 0 \Rightarrow x = 1$$

f(x) decreasing for 0 < x < 1

and increasing for x > 1 so this is a local minimum

 \therefore (1,-1) is a local minimum point Graphically, the graph is continuous,

begins at (0,0) and $\lim_{x \to \infty} f(x) = \infty$ so

the turning point at $\left(1,-1\right)$ must be a local minimum point (and in fact this

case a global minimum). (Students should draw this.)

c
$$f'(x) = 3x^2 - 12x = 3x(x-4)$$

 $f'(x) = 0 \Rightarrow x = 0$ or x = 4Consider the point (0,2), f(x) increasing for x < 0 and decreasing for 0 < x < 4 so this is a local maximum Consider the point (4,-30) f(x) decreasing for 0 < x < 4 and increasing for x > 4 so this is a local minimum (0,2) is a local maximum and (4,-30) is local minimum Graphically, this is a positive cubic, so the first turning point is a maximum and the second point a minimum

2
$$f'(x) = 3ax^2 + 4x = x(3ax + 4)$$

 $f'(x) = 0$ when $x = 0$ or $x = -\frac{4}{3a}$
It is given that the turning point, away from $x = 0$, occurs at $x = 1$
 $\therefore 1 = -\frac{4}{3a} \Rightarrow a = -\frac{4}{3}$

(students should draw this)

3
$$p(0) = d = 1$$
 so $d = 1$
 $p(-1) = -a + b - c + 1 = -3$
so $a - b + c = 4$
 $p'(x) = 3ax^2 + 2bx + c = x(3ax + 2b) + c$
 $p'(0) = 3 \Rightarrow c = 3 \Rightarrow a - b = 1$
 $p'(-1) = 0 \Rightarrow -(-3a + 2b) + 3 = 0$
 $\Rightarrow a = \frac{2b}{3} - 1$
 $\therefore \frac{2b}{3} - 1 - b = 1 \Rightarrow b = -6 \Rightarrow a = -5$
so $a = -5$, $b = -6$, $c = 3$, $d = 1$

4
$$\frac{dy}{dx} = 3x^2 + 2ax = x(3x + 2a) = 0$$

$$\therefore \frac{dy}{dx} = 0 \text{ when } x = 0 \text{ or } x = -\frac{2a}{3}$$

$$\therefore -\frac{2a}{3} = 4 \Rightarrow a = -6$$

$$y(4) = 64 - 6(16) + b = b - 32 = -11$$

$$\Rightarrow b = 21$$
so the local maximum is at $(0, 21)$

Exercise 5M

1
$$f'(x) = 5x^{\frac{3}{2}}$$
 $\therefore f''(x) = \frac{15}{2}x^{\frac{1}{2}}$

2
$$f'(x) = \frac{x^3}{3} - 4x + 5$$

 $\therefore f''(x) = x^2 - 4$
 $f''(x) = x^2 - 4 = 0 \Rightarrow x = \pm 2$

3
$$f'(x) = -2(5-4x)^{-\frac{1}{2}}$$

 $\therefore f''(x) = -4(5-4x)^{-\frac{3}{2}}$

$$4 \quad \frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = 2a^2$$

(terms of order x and constants disapper upon differentiating twice)

$$\therefore 2a^2 = 8 \Rightarrow a = \pm 2$$

Exercise 5N

1 a
$$\frac{dy}{dx} = 3x^2 - 1$$

 $\frac{d^2y}{dx^2} = 6x \Rightarrow 0 \text{ at } x = 0$
Coordinates of point of inflexion are

$$\mathbf{b} \quad \frac{d^2y}{dx^2} = 6x > 0 \Rightarrow x > 0$$

Function concave up on]0,∞[

$$\mathbf{c} \quad \frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = 6x < 0 \Rightarrow x < 0$$

Function concave down on $]-\infty,0[$

2 **a**
$$\frac{dy}{dx} = 4x^3 - 3$$

 $\frac{d^2y}{dx^2} = 12x^2 > 0$

There are no points of inflexion

b
$$\frac{d^2y}{dx^2} = 12x^2 > 0$$

Functions is concave up throughout its domain

c Function is never concave down

3 a
$$\frac{dy}{dx} = 3x^2 - 12x - 12$$

 $\frac{d^2y}{dx^2} = 6x - 12 = 0 \text{ at } x = 2$

Coordinates of point of inflexion are (2,-38)

b
$$\frac{d^2y}{dx^2} = 6x - 12 > 0 \Rightarrow x > 2$$

Function is concave up on $]2,\infty[$

$$\mathbf{c} \quad \frac{d^2y}{dx^2} = 6x - 12 < 0 \Rightarrow x < 2$$

Function is concave down on $]-\infty,2[$

4 a
$$\frac{dy}{dx} = 3x^2 + 2x$$

$$\frac{d^2y}{dx^2} = 6x + 2 = 0 \text{ at } x = -\frac{1}{3}$$

Coordinates of point of inflexion are $\left(-\frac{1}{3}, -\frac{25}{27}\right)$

b
$$\frac{d^2y}{dx^2} = 6x + 2 > 0 \Rightarrow x > -\frac{1}{3}$$

Function is concave up on $]-\frac{1}{3},\infty[$

$$\mathbf{c} \quad \frac{d^2y}{dx^2} = 6x + 2 < 0 \Rightarrow x < -\frac{1}{3}$$

Function is concave up on $]-\infty, -\frac{1}{3}[$

5 a
$$\frac{dy}{dx} = 12x^2 - 4x^3$$

$$\frac{d^2y}{dx^2} = 24x - 12x^2 = 0 \text{ at } x = 0,2$$

Coordinates of point of inflexion are (0,0),(2,16)

b
$$\frac{d^2y}{dx^2} = 24x - 12x^2 > 0 \Rightarrow 0 < x < 2$$

Function is concave up for 0 < x < 2

c
$$\frac{d^2y}{dx^2} = 24x - 12x^2 < 0 \Rightarrow 0 > x, x > 2$$

Function is concave down for x < 0; x > 2

6 a
$$\frac{dy}{dx} = 3x^2 - 6x + 3$$

$$\frac{d^2y}{dx^2} = 6x - 6 = 0 \text{ at } x = 1$$

Coordinates of point of inflexion are (1,0)

b
$$\frac{d^2y}{dx^2} = 6x - 6 > 0 \Rightarrow x > 1$$

Function is concave up on $]1,\infty[$

$$\mathbf{c} \quad \frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = 6x - 6 < 0 \Rightarrow x < 1$$

Function is concave down on $]-\infty,1[$

7 **a**
$$\frac{dy}{dx} = 8x^3 + 3x^2$$

$$\frac{d^2y}{dx^2} = 24x^2 + 6x = 0$$
 at $x = 0, -0.25$

Coordinates of point of inflexion are (-0.25, 0.992), (0,1)

b
$$\frac{d^2y}{dx^2} = 24x^2 + 6x > 0 \Rightarrow x > 0, x < -0.25$$

Function is concave up for x > 0; x < -0.25

c
$$\frac{d^2y}{dx^2} = 24x^2 + 6x < 0 \Rightarrow -0.25 < x < 0$$

Function is concave down for -0.25 < x < 0

8 a
$$\frac{dy}{dx} = 4x^3 - 12x^2 + 16$$

$$\frac{d^2y}{dx^2} = 12x^2 - 24x = 0 \text{ at } x = 0,2$$

Coordinates of point of inflexion are (0,-16), (2,0)

b
$$\frac{d^2y}{dx^2} = 12x^2 - 24 > 0 \Rightarrow x < 0, x > 2$$

Function is concave up when x < 0, x > 2

c
$$\frac{d^2y}{dx^2} = 12x^2 - 24 < 0 \Rightarrow 0 < x < 2$$

Function is concave down when 0 < x < 2

9 a
$$f'(x) = 3x^2 + 4x$$

$$3x^2 + 4x = 0 \Rightarrow x = 0, -\frac{4}{3}$$

$$f''(x) = 6x + 4$$

$$f''(0) = 4$$

$$f''\left(-\frac{4}{3}\right) = -4$$

$$f''(x) = 0 \Rightarrow x = -\frac{2}{3}$$

Non-horizontal inflexion at $\left(-\frac{2}{3}, \frac{43}{27}\right)$

b
$$f'(x) = 3(x-1)^2$$

$$3(x-1)^2=0 \Rightarrow x=1$$

$$f''(x) = 6(x-1) = 0$$
 at $x = 1$

$$f''(1.1) = 0.6 > 0$$

$$f''(0.9) = -0.6 < 0$$

Second derivative = 0 at x = 1, there is a change in concavity at x = 1. Therefore there is a horizontal inflexion

at (1, 0)

c
$$f'(x) = -12x^3 - 24x^2$$

 $-12x^3 - 24x^2 = 0 \Rightarrow x = 0, -2$
 $f''(x) = -36x^2 - 48x = 0 \text{ at } x = 0, -\frac{4}{3}$
 $f''(0.1) = -\frac{129}{25}$
 $f''(-0.1) = \frac{111}{25}$

First and second derivatives = 0 at x = 0, and there is a change in concavity at x = 0.

Therefore there is a horizontal inflexion at (0, 2)

$$f''(-2) = -48$$

Second derivative = 0 at $x = -\frac{4}{3}$, and

there is a change in concavity at $% \frac{1}{2}\left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1$

$$X=-\frac{4}{3}$$

Therefore there is a non-horizontal point of inflexion at $\left(-\frac{4}{3}, \frac{310}{27}\right)$

d
$$f'(x) = \frac{1}{2}x^{-\frac{3}{2}}$$

First derivative has no roots, therefore there are no points of inflexion.

10a i
$$f'(x) = 3x^2 - 6x - 6$$

 $3x^2 - 6x - 6 = 0 \Rightarrow x = -0.732, 2.73$
 $f''(x) = 6x - 6$
 $f''(-0.732) = -10.392$
 $f''(2.73) = 10.38$

Therefore local max at (-0.732, 3.39) and local min at (2.73, -17.4)

ii
$$f''(x) = 6x - 6 = 0 \Rightarrow x = 1$$

Non-horizontal inflexion at (1, -7)

- iii Increasing: x < -0.732 or x > 2.73 decreasing for -0.732 < x < 2.73
- iv Concave downward x < 1 and concave upward for x > 1

b i
$$f'(x) = 2(x-1) \Rightarrow x = 1$$

 $f''(x) = 2$
 $f(1) = 2$

Therefore local min at (1, 0)

- ii f''(x) = 2 therefore there are no inflexion points
- iii Increasing for x > 1

decreasing for x < 1

iv Concave upward for $x \in \mathcal{F}$

c i
$$f'(x) = 12x^3 + 12x^2 = 0 \Rightarrow x = -1, 0$$

 $f''(x) = 36x^2 + 24x$
 $f''(-1) = 60$
 $f''(0) = 0$

Therefore local min at (-1, -3)

ii
$$f''(x) = 36x^2 + 24x = 0 \Rightarrow x = -\frac{2}{3}, 0$$

Horizontal inflexion point at (0, -2)Non-horizontal inflexion point at

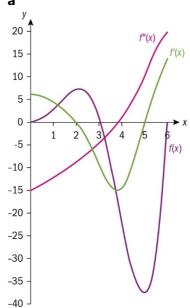
$$\left(-\frac{2}{3}, -\frac{70}{27}\right)$$

- iii Increasing x > -1Decreasing x < -1
- **iv** Concave upward $x < -\frac{2}{3}$ or x > 0

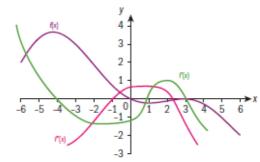
Concave downward $-\frac{2}{3} < x < 0$

Exercise 50

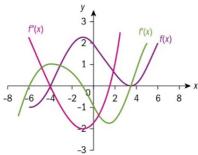
1 a

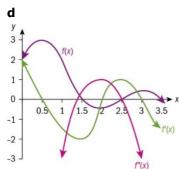


b



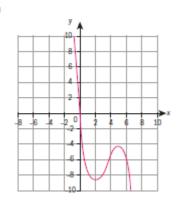
C



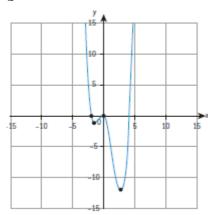


Exercise 5P

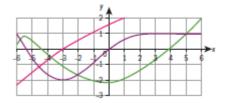
1 a



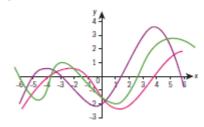
b



2 a



b



Exercise 5Q

1 a
$$L = \frac{100}{x}$$

b $P = 2x + \frac{100}{x}$ assuming clarification to the question is made, as written in the comments

c
$$P'(x) = 2 - \frac{100}{x^2}$$

 $P'(x) = 0 \Rightarrow x = \sqrt{50} = 5\sqrt{2} \quad (x > 0)$ This must be a minimum because $\lim_{x \to 0^+} P(x) = \infty$ and $\lim_{x \to \infty} P(x) = \infty$

and this is the only turning point (and the function is continuous)

So
$$x = 5\sqrt{2}$$
 :: $P(5\sqrt{2}) = 2(5\sqrt{2}) + \frac{100}{5\sqrt{2}}$

$$=10\sqrt{2}+10\sqrt{2}$$

= $20\sqrt{2}$ (measured in metres)

d



$$2 \quad \frac{dy}{dx} = 600 + 30x - 3x^2$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Rightarrow x^2 - 10x - 200$$

$$= (x-20)(x+10) = 0$$

x = 20 since x > 0 $y(20) = 600(20) + 15(20)^2 - (20)^3 = 10000$ Therefore, maximum profit is \$10 000

- 3 a $h = \frac{216}{s^2}$
 - **b** $A = s^2 + \frac{864}{s}$
 - c $\frac{dA}{ds} = 2s \frac{864}{s^2} = 0$ $\Rightarrow s^3 = 432 \text{ so } s = \sqrt[3]{432}$
- **4** The length of each side of the square is *s* Therefore the total length of wire used for the rectangle is 150 4s Since the length is twice the length of the width,

the length of the rectangle is $50 - \frac{4s}{3}$ and the width of the rectangle is $25 - \frac{2s}{3}$

so the total area enclosed by the square and rectangle is

$$A = s^{2} + \left(50 - \frac{4s}{3}\right)\left(25 - \frac{2s}{3}\right)$$

$$= s^{2} + 2\left(25 - \frac{2s}{3}\right)^{2}$$

$$= s^{2} + 2\left(625 - \frac{100s}{3} + \frac{4s^{2}}{9}\right)$$

$$= \frac{17s^{2}}{9} - \frac{200s}{3} + 1250$$

$$\frac{dA}{ds} = \frac{34}{9}s - \frac{200}{3} = 0 \Rightarrow s = \frac{300}{17}$$

5 Let the length of the shorter side of the base be *I*, so the longer side measures 2*I*

Therefore the area of the base $is2l^2$. Let the height be h

$$V=2I^2h=10 \Rightarrow h=\frac{5}{I^2}$$

So the total cost is

$$C = 2I^{2} (10) + 2(2I)(h)(6) + 2(I)(h)(6)$$
$$= 20I^{2} + 36Ih = 20I^{2} + \frac{180}{I}$$

$$\frac{\mathrm{d}C}{\mathrm{d}I} = 40I - \frac{180}{I^2} = 0 \Rightarrow I = \left(\frac{9}{2}\right)^{\frac{1}{3}}$$

$$\therefore C_{\min} = 20 \left(\frac{9}{2}\right)^{\frac{2}{3}} + 180 \left(\frac{2}{9}\right)^{\frac{1}{3}}$$

= 164 (to nearest dollar)

Exercise 5R

- **1 a** $v(t) = 3t^2 3$, a(t) = 6t
 - **b** s(0) = 1, v(0) = -3, a(0) = 0

At this instant, the particle is 1 metre from the origin in the positive direction, travelling towards the origin at 3m/s, and is not accelerating

- **c** The particle is moving away from the origin at 9m/s and is accelerating away from the origin at 12m/s²
- **d** The change of sign of v(t) occurs at t = 1 (t > 0)
- **e** t > 1
- **f** s(0) = 1, s(1) = -1so travels 2m in this period s(1) = -1, s(3) = 19so 20m travelled in this period \therefore Altogether distance travelled is 22m
- 2 a 1m
 - **b** $s'(t) = 12 3t^2 = 0 \Rightarrow t = 2$ s(2) = 17 and this is clearly a maximum so 17m
 - **c** $v(t) = 12 3t^2$ v(0) = 12, v(1) = 9, v(3) = -15
 - **d** 16 + 17 = 33 so 33m
- 3 $s'(t) = 15 10t \Rightarrow t = \frac{3}{2}$

clearly attains maximum here as the function is a negative parabola

$$s_{\text{max}} = s\left(\frac{3}{2}\right) = 15\left(\frac{3}{2}\right) - 5\left(\frac{3}{2}\right)^2 = \frac{45}{4}$$

- **4 a** s(0) = 10 so 10m
 - **b** $s(t) = 0 \Rightarrow t^2 5t 10 = 0$

$$\therefore t = \frac{5 + \sqrt{65}}{2} \approx 6.53 \ (t > 0)$$

 $\mathbf{c} \quad v(t) = s'(t) = 5 - 2t$

$$v\left(\frac{5+\sqrt{65}}{2}\right) = -8.06\,\text{ms}^{-1}$$

$$a(t) = v'(t) = -2 \,\mathrm{ms}^{-2}$$

As both the velocity and acceleration are negative, the diver is speeding up as he/she hit the water.

5
$$h_0 = 0$$
, $v_0 = 50$: $h(t) = 50t - 4.9t^2$

$$h'(t) = 50 - 9.8t = 0 \Rightarrow t = \frac{50}{9.8}$$

(clearly maximum here)

$$h_{\text{max}} = h\left(\frac{50}{9.8}\right) = 127.551$$

so maximum height is 127.6m to 1d.p.

$$t_{ground} = \frac{50}{4.9} = 10.2041$$

so hits ground after 10.2s to 1d.p.

6 a
$$t = 0$$
, $t = 3$, $t = 6$, $t = 11$

b i Eastward is positive \rightarrow 0 < t < 3; 6 < t < 11

ii Westward is negative \rightarrow 3 < t < 6

c i
$$t = 1.5$$
 ii $t = 4.5$

d
$$t = 1.5$$
 and $t = 4.5$

e Speeding up:
$$t \in (0,1.5)$$
;

$$t \in (3,4.5); t \in (6,9)$$

Slowing down: $t \in (1.5,3)$;

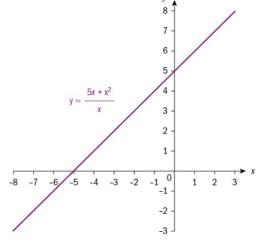
$$t \in (4.5, 6); t \in (9, 11)$$

Chapter Review

1 a
$$y = 2$$

b
$$a = 2$$

2 a



b
$$\lim_{x\to 0^-} \frac{5x+x^2}{x} = \lim_{x\to 0^+} \frac{5x+x^2}{x} = 5$$

3 a
$$y = 6$$
, $x = \pm 3$ **b** $y = 0$, $x = -3$

4 a Using the product rule,

$$\frac{dy}{dx} = -10(1-2x)^4 (3x-2)^6$$

$$+18(1-2x)^5 (3x-2)^5$$

$$= (1-2x)^4 (3x-2)^5$$

$$(-10(3x-2)+18(1-2x))$$

$$= 2(1-2x)^4 (3x-2)^5 (19-33x)$$

b
$$y = \frac{x-3}{x(x-3)} = \frac{1}{x}$$
 so $\frac{dy}{dx} = -\frac{1}{x^2}$

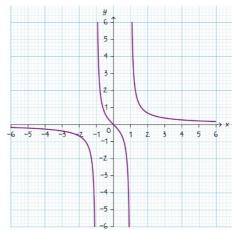
$$\mathbf{c} \quad \frac{dy}{dx} = \frac{1}{2} x^{-\frac{1}{2}} - \frac{4}{3} x^{-\frac{2}{3}}$$

5 a
$$y = 0, x = \pm 1$$

b Using the quotient rule,

$$\frac{dy}{dx} = \frac{(x^2 - 1) - x(2x)}{(x^2 - 1)^2}$$
$$= -\frac{x^2 + 1}{(x^2 - 1)^2} < 0 \text{ for all } x \in i$$

C



6
$$\frac{dy}{dx} = 3x^2 - 6x - 9 = 3(x - 3)(x + 1)$$

$$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Rightarrow x = -1 \text{ or } x = 3$$

$$y(-1) = -1 - 3 + 9 + 2 = 7$$

$$y(3) = 27 - 27 - 27 + 2 = -25$$

So
$$y = -25$$
 and $y = 7$

7 Using the quotient rule,

$$\frac{dy}{dx} = \frac{2(x-1)-2x}{(x-1)^2} = -\frac{2}{(x-1)^2}$$

 \therefore at (2,4) the gradient is -2

So the tangent at this point is

$$y-4=-2(x-2) \Rightarrow y=-2x+8$$

The gradient at (3,3) is $-\frac{1}{2}$ so

the gradient of the normal at this point is 2

Therefore the normal at this point is

$$y-3 = -\frac{1}{2}(x-3) \Rightarrow y = -\frac{x}{2} + \frac{9}{2}$$

$$\therefore -\frac{x}{2} + \frac{9}{2} = -2x + 8 \Rightarrow x = \frac{7}{3}$$

$$\Rightarrow y = -2\left(\frac{7}{3}\right) + 8 = \frac{10}{3} \therefore P\left(\frac{7}{3}, \frac{10}{3}\right)$$

8
$$f'(x) = 6x^2 - 3$$

$$f'(1) = 3$$

So the normal to the curve at

this point has gradient $-\frac{1}{2}$

$$\therefore y - 0 = -\frac{1}{3}(x - 1) = -\frac{x}{3} + \frac{1}{3}$$

9
$$\frac{dy}{dx} = -3x^2 + 4x$$

$$\frac{dy}{dx} = -4 \Rightarrow 3x^2 - 4x - 4 = 0$$

$$\Rightarrow (3x+2)(x-2)=0$$

$$\therefore x = -\frac{2}{3} \text{ or } x = 2$$

$$y\left(-\frac{2}{3}\right) = \frac{8}{27} + 2\left(\frac{4}{9}\right) + 1 = \frac{59}{27}$$

$$v(2) = -8 + 8 + 1 = 1$$

$$\therefore \left(-\frac{2}{3}, \frac{59}{27}\right)$$
 and $(2,1)$

10 Using the quotient rule,

$$\frac{dy}{dx} = \frac{2x(x+1) - x^2}{(x+1)^2} = \frac{x^2 + 2x}{(x+1)^2} = \frac{x(x+2)}{(x+1)^2}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Rightarrow x = 0 \text{ or } x = -2$$

Students may either use first derivative or second derivative test here

e.g. second derivative test:

$$\frac{d^2y}{dx^2} = \frac{2(x+1)^3 - 2(x^2 + 2x)(x+1)}{(x+1)^4}$$

$$=\frac{2}{\left(x+1\right)^3}$$

The second derivative is negative at

x = -2 and positive at x = 0

 \therefore (-2,-4) is a local maximum

and (0,0) is a local minimum

11a
$$f(x) = 0 \Rightarrow x = -1$$
 b $y = 0, x = 0$

b
$$y = 0, x = 0$$

c
$$f(x) = 9\left(\frac{1}{x} + \frac{1}{x^2}\right)$$

$$\Rightarrow f'(x) = 9\left(-\frac{1}{x^2} - \frac{2}{x^3}\right)$$

$$\therefore f'(x) = 0 \Rightarrow x = -2$$

$$y=f(-2)=-\frac{9}{4}$$

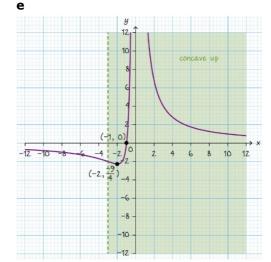
$$f''(x) = 9\left(\frac{2}{x^3} + \frac{6}{x^4}\right)$$

$$f''(-2) = 9\left(-\frac{1}{4} + \frac{3}{8}\right) = \frac{9}{8} > 0$$

so
$$\left(-2, -\frac{9}{4}\right)$$
 is a local minimum

d For f(x) to be concave up f''(x) > 0

$$9\left(\frac{2}{x^3} + \frac{6}{x^4}\right) > 0 \Rightarrow 2x + 6 > 0$$



12a
$$f(x) = 0 \Rightarrow \sqrt{x} (\sqrt{x} - b) = 0$$

 $\Rightarrow x = 0 \text{ or } x = b^2$

b
$$f'(x) = 1 - \frac{b}{2\sqrt{x}}$$

i
$$f'(x) > 0$$
 when $x > \frac{b^2}{4}$

ii
$$f'(x) < 0$$
 when $0 < x < \frac{b^2}{4}$

$$\mathbf{c} \quad f''(x) = \frac{b}{4x^{\frac{3}{2}}}$$

i
$$f''(x) > 0$$
 when $b > 0$

ii
$$f''(x) < 0$$
 when $b < 0$

13a
$$v(t) = 49 - 4.9t$$

b
$$v(t) = 0 \Rightarrow t = 10$$

$$h(10) = 49(10) - 2.45(10)^2$$

= 490 - 245 = 245
So 245m

14a
$$v(0) = -2$$

b
$$v(t) = 0 \Rightarrow (1+t)^2 = 4t + 9$$

 $t^2 - 2t - 8 = (t-4)(t+2) = 0$
So $t = 4$

c
$$a(t) = 1 - \frac{2}{\sqrt{4t+9}}$$

 $a(4) = 1 - \frac{2}{\sqrt{25}} = \frac{3}{5}$

d Always speeding up since acceleration is always positive

15a
$$f'(x) = 4x^3 - 6x^2 - 2x + 3$$
 A1

b
$$g'(x) = \frac{-4(x^2+1)-(-4x)\cdot 2x}{(x^2+1)^2}$$
 M1A

$$g'(x) = \frac{4x^2 - 4}{(x^2 + 1)^2}$$
 A1

c
$$h'(x) = 1 \cdot (x-7) + (x+2) \cdot 1$$
 M1

$$h'(x) = 2x - 5$$
 A1

d
$$i'(x) = 3 \cdot 2 \cdot (2x + 3)^2$$
 M1

$$i'(x) = 6(2x+3)^2$$
 A1

point is non-positive and therefore different from 1. R1

b Graph 2 Α1 as y increases as x increases R1

c Graph 3 Α1 as the other two functions are not defined at infinity R1

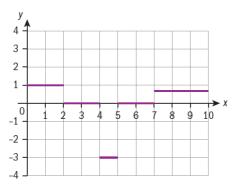
d Graph 1 Α1 as the function is decreasing. R1

17a i $0 \le t \le 2$, $4.6 \le t \le 5$ A1A1 and $8.5 \le t \le 10$ Α1 ii $2 \le t \le 4$ and $5 \le t \le 7$ A1A1

iii $4.6 \le t \le 8.5$ Α1

b f(t) = 2t, g(t) = 2h(t) = -3t + 14, i(t) = -1 $f(t)=\frac{1}{3}(2t-17)$ Α4

c Up to two correct branches correct A1; all branches correct A2; all branches correct and labels and scale also correct A3



18a Letting x represent the number of \$10 increases above \$320. Then rental income is

$$R(x) = (320 + 10x)(200 - 5x)$$
 A1

$$R'(x) = 400 - 100x = 0$$
 M1

$$x = 4$$
 A1

Which corresponds to \$360 rent

R1 **b** i $200 - 5 \times 4 = 180$ Α1 ii $360 \times 180 = 64800 M1A1

19 a
$$h(4) = 370$$

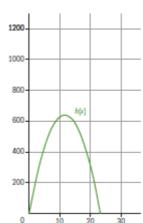
and
$$h(5) = 438$$
 (3 s.f.) A1A1

b
$$v(t) = h'(t) = 112 - 9.8t$$
 M1A1

c
$$v(t) = 0 \Rightarrow 112 - 9.8t = 0$$
 M1

$$t = 11.4 (3 s.f.)$$
 A1

d Double x-coordinate of maximum or determine zero M1 22.8 (3 s.f.) Α1



Shape Α1 Domain $0 \le x \le 22.9 (3 \text{ sf})$ Α1 Maximum 640 (3 sf) Α1 $v(22.9) = -112 \,\mathrm{ms^{-1}}$ M1A1

AG

g
$$a(t) = v'(t) = -9.8$$

M1A1

 $(h' \circ g^{-1})(x) = h'(g^{-1}(x))$ Μ1

A1AG

$$=2\cdot\frac{X+2}{X-1}$$

 $(h \circ g^{-1})'(x) \neq (h' \circ g^{-1})(x)$

20a i
$$\left(\frac{f}{g}\right)'(2) = \frac{f'(2)g(2) - f(2)g'(2)}{(g(2))^2}$$

M1

$$=\frac{10\times 4-9\times \left(-\frac{4}{3}\right)}{4^2}$$
 A1

$$=\frac{52}{16}\bigg(=\frac{13}{4}=3.25\bigg)$$
 A1

ii
$$(g \circ f)'(1) = g'(f(1))f'(1)$$
 M1

$$=-\frac{4}{3}\times 4=-\frac{16}{3}$$
 A1

b i False Α1

as derivative changes sign. R1

as the derivatives at these points are not negative reciprocals.

R1

21a
$$\frac{N(3)-N(1)}{3-1}=1410$$
 M1A1

$$\frac{N(5) - N(4)}{5 - 4} = 2220$$
 A1

the first period the number of cases is increasing in average 1410 per day; in the second period it increases in average 2220 per day.

b
$$\frac{dN}{dt} = 900t - 90t^2$$
 M1A1

c After 10 days (reaches 15 000 cases) M1A1

$$\mathbf{d} = \frac{d^2 N}{dt^2} = 900 - 180t$$
 M1A1

which gives the variation of the rate at which the spread of the disease spreads. R1

22a
$$x = \frac{y+2}{y-1}$$
 M1

$$x(y-1) = y + 2$$
 M1

$$xy - y = x + 2$$
 A1

$$g^{-1}(x) = \frac{x+2}{x-1} = g(x)$$
 A1AG

b
$$(h \circ g^{-1})'(x) = h'(g^{-1}(x))(g^{-1})'(x)$$

M1A1

$$= 2 \cdot \frac{x+2}{x-1} \cdot \left(-\frac{3}{(x-1)^2} \right) = \left(-\frac{6(x+2)}{(x-1)^3} \right)$$

Representing data: statistics for univariate data

b

Skills check

1 a Mean =
$$\frac{2+3+4+5+6}{5} = 4$$

b Mean =
$$\frac{13+9+7+12+15+19+2}{7} = 11$$

- 2 a The number that occurs most often is 5
 - **b** The numbers that occur most often are 1 and 7. The data is bimodal
- 3 a The median is the middle number, 6
 - **b** Arrange the data in order of size. 2,3,5,7,8,9.

The median is in between 5 and 7.

$$\frac{1}{2}(5+7)=6$$

Exercise 6A

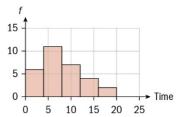
- 1 a Discrete Continuous
 - c Continuous
 - d Discrete
- 2 a Stratified sampling
 - **b** Systematic sampling
 - c Simple random sampling
 - **d** Quota sampling
- 3 a Stratified sampling
 - **b** Stratified sampling
 - c Systematic sampling
 - **d** Simple random sampling
 - e Quota sampling

Exercise 6B

- 1 a Continuous
 - **b** The frequency table is given here (note difference between this one and the one in the solutions provided)

Time (t)	f
0 ≤ <i>t</i> ≤ 4	6
4 < t ≤ 8	11
8 < <i>t</i> ≤ 12	7
12 < <i>t</i> ≤ 16	4
16 < <i>t</i> ≤ 20	2

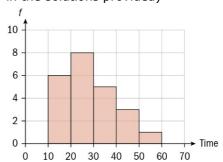
c The histogram is given here (note difference between this one and the one in the solutions provided)



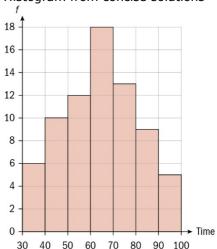
- **d** The data is right or positively skewed
- 2 a Continuous
 - **b** The frequency table is given here (note difference between this one and the one in the solutions provided)

Time (t)	f
10 ≤ <i>t</i> ≤ 20	6
20 < <i>t</i> ≤ 30	8
30 < t ≤ 40	5
40 < <i>t</i> ≤ 50	3
50 < <i>t</i> ≤ 60	1

c The histogram is given here (note difference between this one and the one in the solutions provided)



- d The data is right or positively skewed
- 3 a Continuous
 - Histogram from concise solutions



- **c** The data is neither right nor left skewed, it has normal distribution
- 4 a Frequency table from concise solutions
 - **b** The data is left or negatively skewed
- **5 a** The frequency table is given here (note difference between this one and the one in the solutions provided)

Hours	Days
$0 < h \le 1$	1
$1 < h \le 2$	2
2 < h ≤ 3	3
$3 < h \le 4$	4
4 < h ≤ 5	6
5 < h ≤ 6	8
6 < h ≤ 7	6

b The data is left or negatively skewed

Exercise 6C

- **1 a** The number that occurs most often is 8
 - **b** The number that occurs most often is 4
 - **c** The number that occurs most often is 13
 - **d** Each number occurs only once, so there is no mode
 - **e** The numbers that occur most often are 2 and 4. The data is bimodal
- **2 a** The shoe size with the highest frequency is 10
 - **b** The modal mark range is $60 < y \le 80$
- **3 a i** The mode is 3

ii The modal range is $30 < x \le 35$

- **b** i Discrete data, since the scale on the x-axis is given as discrete values.
 - **ii** Continuous data, since there is a continuous scale of values on the x-axis.

Exercise 6D

- 1 **a** The mean is 3.65 **b** The mean is 12.8056
 - c The mean is 3.35

2 a

x	f	Mid value	fm
$0 \le x \le 10$	18	5	90
10 < <i>x</i> ≤ 20	14	15	210
20 < <i>x</i> ≤ 30	12	25	300
30 < <i>x</i> ≤ 40	9	35	315
40 < <i>x</i> ≤ 50	7	45	315
	$\Sigma f = 60$		$\Sigma fm = 1230$

$$\overline{x} = \frac{\Sigma fm}{\Sigma f} = \frac{1230}{60} = 20.5$$

b

x	f	Mid value (m)	fm
0 ≤ <i>x</i> ≤ 12	4	6	24
12 < <i>x</i> ≤ 24	0	18	0
24 < <i>x</i> ≤ 36	8	30	240
36 < <i>x</i> ≤ 48	15	42	630
48 < <i>x</i> ≤ 60	13	54	702
60 < <i>x</i> ≤ 72	7	66	462
	$\Sigma f = 47$		$\Sigma fm = 2058$

$$\bar{x} = \frac{\Sigma fm}{\Sigma f} = \frac{2058}{47} = 43.7872 \approx 43.8$$

C

x	f	Mid value (m)	fm
$1 \le x \le 1.5$	4	1.25	5
$1.5 < x \le 2$	6	1.75	10.5
2 < <i>x</i> ≤ 2.5	7	2.25	15.75
$2.5 < x \le 3$	7	2.75	19.25
$3 < x \le 3.5$	5	3.25	16.25
	$\Sigma f = 29$		$\Sigma fm = 66.75$

$$\bar{x} = \frac{\Sigma fm}{\Sigma f} = \frac{66.75}{29} = 2.30172 \approx 2.30$$

3 Mean

$$=\frac{0\times 6+1\times 5+2\times 4+3\times 7+4\times 10+5\times 4}{6+5+4+7+10+4}$$

$$=\frac{94}{36}=2.6111\approx 2.6 \text{ cups of coffee}$$

4 a Phil had

$$2+4+4+6+10+15+4+5$$

= 50 tomato plants

b The modal number of tomatoes per plant was 8

C Mean =
$$\frac{3 \times 2 + 4 \times 4 + 5 \times 4 + 6 \times 6 + 7 \times 10 + 8 \times 15 + 9 \times 4 + 10 \times 5}{50}$$

$$=\frac{177}{25}=7.08$$

5 The mean number of fish caught per day

$$\frac{0 \times 1 + 1 \times 5 + 2 \times 4 + 3 \times 2 + 4 \times 3 + 5 \times 5 + 6 \times 3 + 7 \times 2 + 8 \times 3 + 9 \times 1 + 10 \times 2}{1 + 5 + 4 + 2 + 3 + 5 + 3 + 2 + 3 + 1 + 2}$$

$$=\frac{141}{31}\approx 4.55$$

6 The mean amount received per day is $5 \times 6 + 15 \times 14 + 25 \times 15 + 35 \times 8 + 45 \times 2$ 6 + 14 + 15 + 8 + 2

$$=\frac{197}{9}=$21.89$$

7 a There are

$$7 + 12 + 10 + 9 + 7 + 6 + 6 + 3$$

= 60 families represented

- **b** The data is right or positively skewed
- c The mode of the data is 2 children per
- **d** The mean number of children is $7 \times 1 + 12 \times 2 + 10 \times 3 + 9 \times 4 + 7 \times 5 + 6 \times 6 + 6 \times 7 + 3 \times 8$

$$=\frac{39}{10}=3.9$$

- **8 a** There are 40 + 60 + 80 + 30 + 10= 220 people in the village
 - **b** The modal class is $40 < a \le 60$
 - c The mean age of the villagers is $40 \times 10 + 60 \times 30 + 80 \times 50 + 30 \times 70 + 10 \times 90$

$$=\frac{460}{11}\approx 41.8$$

9 In the set of numbers, each appears only once, so therefore for 2 to be the mode, a = 2. Given that the mean is 5, we have

$$5 = \frac{1+2+2+4+5+6+b+8+10}{9},$$

$$5 \times 9 = 38+b, \ 45 = 38+b, \ b = 45-38,$$

$$b = 7$$

10 Given that the mean of the numbers is 23, we have to find x

$$23 = \frac{8 + x + 17 + (2x + 3) + 45}{5}$$

$$23 \times 5 = 73 + 3x$$

$$115 = 73 + 3x$$

$$115 - 73 = 3x$$

$$42 = 3x$$

$$x=\frac{42}{3},$$

$$x = 14$$

11 Starting with 2 and 3, we know that as 4 is the mode, it must occur at least twice, start by assuming that there are two 4s then x and y are the remaining two

numbers, the mean is 4, so

$$4 = \frac{2+3+4+4+x+y}{6}$$

$$6 \times 4 = 13 + x + y$$

$$24 - 13 = x + y$$

$$11 = x + y$$

As x and y are positive integers less than 8, the only possible solution is if x = 5and y = 6 (or y = 5 and x = 6), so the numbers are 2,3,4,4,5,6

12 The mean mass of the students is

$$\frac{52 \times 8 + 44 \times 12}{20} = \frac{236}{5} = 47.2 \text{ kg}$$

Exercise 6E

- 1 a The median is the middle number, 18
 - **b** The middle number lies between 18 and 19, $\frac{18+19}{2} = \frac{37}{2} = 18.5$
 - c Arranging the numbers in size order 1,2,4,5,5, the middle number is 4
 - **d** The numbers are already in size order (reversed), so the middle number is the median, the middle number lies

between 3 and 4,
$$\frac{3+4}{2} = \frac{7}{2} = 3.5$$

e 2,4,5,5,6,7,7,8,8,10 . The middle number is between 6 and 7,

$$\frac{6+7}{2}=\frac{13}{2}=6.5$$

- **f** 2,3,5,5,6,8. The median is 5
- 2 Total number of days

$$= 2 + 4 + 3 + 7 + 11 + 18 + 6 + 2 = 53$$

Median =
$$\left(\frac{n+1}{2}\right)^{th} = \left(\frac{53+1}{2}\right)^{th} = 27^{th} = 9$$

3 a Mean

$$= \frac{2000000 \times 1 + 1000 \times 10 + 600 \times 14 + 200 \times 25}{1 + 10 + 14 + 25}$$
$$= \frac{2023400}{50} = $40468$$

- **b** The mode is the most common number,
- c The median number is the number in the $\left(\frac{50+1}{2}\right)^{th} = 25.5^{th}$ position, that is

the number between 200 and 600,

$$\frac{200+600}{2}=400$$

Exercise 6F

1 a The median is the middle number, 8

b
$$Q_1 = \left(\frac{n+1}{4}\right)^{th} = \left(\frac{11+1}{4}\right)^{th} = 3^{rd} = 7$$

c
$$Q_3 = \left(\frac{3(n+1)}{4}\right)^{th} = \left(\frac{3(11+1)}{4}\right)^{th}$$

$$=9^{th}=12$$

d
$$IQR = Q_3 - Q_1 = 12 - 7 = 5$$

- 2 In ascending order, the numbers are 2, 4, 5, 5, 5, 6, 6, 7, 8, 9, 10, 15
 - **a** Mediar

$$= \left(\frac{n+1}{2}\right)^{th} = \left(\frac{12+1}{2}\right)^{th} = 6.5^{th} = 6$$

- **b** Q_1 is the median of the lower half of the numbers, 5
- ${f c}$ Q_3 is the median of the upper half of the numbers, it lies between 8 and 9, 8.5

d IQR =
$$Q_3 - Q_1 = 8.5 - 5 = 3.5$$

e Range = largest – smallest =
$$15 - 2 = 13$$

- **3** Sorting the number of sit-ups into ascending order, 2, 10, 10, 12, 14, 16, 16, 20, 25, 25, 28, 30, 37, 40, 45, 50
 - a Median

$$= \left(\frac{n+1}{2}\right)^{th} = \left(\frac{16+1}{2}\right)^{th} = 8.5^{th}$$
$$= \frac{20+25}{2} = 22.5$$

- **b** Q_1 is the median of the lower half of the numbers, $\frac{12+14}{2}=13$
 - Q_3 is the median of the upper half of the numbers, $\frac{30+37}{2}=33.5$

$$IQR = Q_3 - Q_1 = 33.5 - 13 = 20.5$$

- **c** On 8 of the 16 days, Lincy did more than 22.5 sit-ups.
- **d** The 'middle half' of the number of situps Lincy did was between 13 and 33.5.
- **e** On 4 of the 16 days, Lincy did more than 33.5 sit-ups.
- **4** Sorting the number of cars into ascending order, 20, 20, 25, 30, 35, 35, 35, 35, 45, 45, 50.

$$IQR = Q_3 - Q_1.$$

$$Q_1 = \left(\frac{n+1}{4}\right)^{th} = \left(\frac{11+1}{4}\right)^{th} = 3^{rd} = 25$$

$$Q_3 = \left(\frac{3(n+1)}{4}\right)^{th} = \left(\frac{3(11+1)}{4}\right)^{th} = 9^{th} = 45$$

$$IQR = Q_3 - Q_1 = 45 - 25 = 20$$

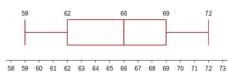
- **5** Q_1 is the median of the lower half of the numbers, 2 Q_3 is the median of the upper half of the numbers, it lies between 4 and 5, 4.5 $IQR = Q_3 Q_1 = 4.5 2 = 2.5$
- **6 a i** Median $= \left(\frac{n+1}{2}\right)^{th} = \left(\frac{12+1}{2}\right)^{th} = 6.5^{th}$ $\Rightarrow \frac{9+r}{2} = 9.5$ $9.5 = \frac{9+r}{2}$ $9.5 \times 2 = 9+r$ 19-9=r r = 10
 - ii Q_3 is the median of the upper half of the numbers, it is between s and 13 $13 = \frac{s+13}{2}$ $21 \times 3 = s+13$

$$26 - 13 = s$$
$$s = 13$$

b The value of t can be found as follows $10 = \frac{5+6+7+7+9+9+10+10+13+13+13+t}{12},$ $10 \times 12 = 102+t$ 120-102 = tt = 18

Exercise 6G

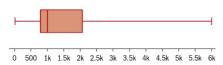
1



- 2 a The minimum time was 30.1
 - **b** The maximum time was 35
 - c The median time was 32.5
 - **d** The IQR was 33.1 31.9 = 1.2

3 a

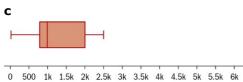
The number of children in international schools in Portmany



b $Q_3 + 1.5(IQR)$

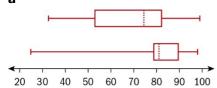
$$= 2067.5 + 1.5 \times 1272.5$$

so it is an outlier



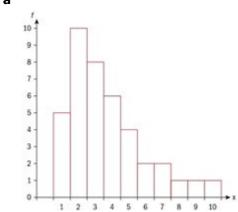
d The outlier was removed because it distorted the analysis

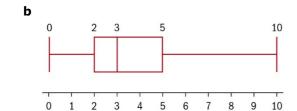
4 a



- **b** The morning exam
- c This means that there is a bigger difference between the 25% and the 75% of the scores

5 a





c The data is right or positively skewed

6 1A, 2C, 3B

Exercise 6H

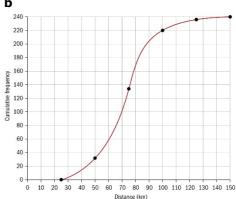
- 1 a The longest time taken was 18 minutes
 - **b** The median is 11 minutes

- **c** IQR = 13.6 8.2 = 5.4 minutes
- **d** k = 15.6 minutes
- 2 a The median is 40 minutes
 - **b** IQR = 50 30 = 20
 - **c** 53

3 a

Distar	ice	0 ≤ <i>d</i> ≤ 25				100 < <i>d</i> ≤ 125	
CF		0	32	134	220	236	240

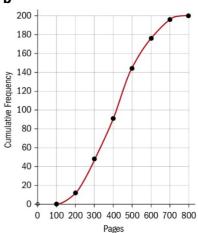
b



- c The median is 73 km
- **d** IQR = 82 60 = 22 km
- e 3 cars

Pages	CF
100 ≤ <i>p</i> ≤ 200	12
200 < p ≤ 300	48
300 < p ≤ 400	90
400 < <i>p</i> ≤ 500	143
500 < <i>p</i> ≤ 600	176
600 < p ≤ 700	196
700 < p ≤ 800	200

b



- c The median is 420
- **d** IQR = 510 300 = 210

e 80 students

Exercise 6I

1 a
$$\bar{x} = \frac{\Sigma x}{n} = \frac{4+6+7+7+5+1+2+3}{8}$$

= 4.375

$$\sigma^{2} = \frac{\sum x^{2}}{n} - \left(\frac{\sum x}{n}\right)^{2}$$

$$= \frac{4^{2} + 6^{2} + 7^{2} + 7^{2} + 5^{2} + 1^{2} + 2^{2} + 3^{2}}{8} - 4.375^{2}$$

$$= 23.625 - 19.1406 \approx 4.48$$

$$\sigma = \sqrt{\sigma^{2}} \approx 2.12$$

$$\mathbf{b} \quad \overline{x} = \frac{\Sigma x}{n}$$

$$= \frac{2+5+8+7+1+3+9+11+4+2}{10}$$

$$= 5.2$$

$$\sigma^2 = \frac{\Sigma x^2}{n} - \left(\frac{\Sigma x}{n}\right)^2$$

$$= \frac{2^2+5^2+8^2+7^2+1^2+3^2+9^2+11^2+4^2+2^2}{10} - 5.2^2$$

$$= 37.4 - 37.04 \approx 10.4$$

$$\sigma = \sqrt{\sigma^2} \approx 3.22$$
c $\overline{x} = \frac{\Sigma x}{p} = \frac{-4 + -2 + 0 + 3 + -5}{5} = -1.6$

$$\sigma^{2} = \frac{\sum x^{2}}{n} - \left(\frac{\sum x}{n}\right)^{2}$$

$$= \frac{(-4)^{2} + (-2)^{2} + 0^{2} + 3^{2} + (-5)^{2}}{5} - 5.2^{2}$$

$$= 10.8 - 2.56 = 8.24$$

$$\sigma = \sqrt{\sigma^2} \approx 2.87$$

d
$$\overline{x} = \frac{\Sigma x}{n} = \frac{1+2+3+4+5}{5} = 3$$

$$\sigma^{2} = \frac{\sum x^{2}}{n} - \left(\frac{\sum x}{n}\right)^{2}$$

$$= \frac{1^{2} + 2^{2} + 3^{2} + 4^{2} + 5^{2}}{5} - 3^{2}$$

$$= 11 - 9 = 2$$

$$\sigma = \sqrt{\sigma^{2}} \approx 1.41$$

e
$$\bar{x} = \frac{\Sigma x}{n} = \frac{1+2+3+4+5+500}{6} \approx 85.8$$

$$\sigma^2 = \frac{\Sigma x^2}{n} - \left(\frac{\Sigma x}{n}\right)^2$$

$$= \frac{1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 500^2}{6} - 85.833^2$$
$$= 41675.833 - 7367.36 \approx 34308$$

$$\sigma = \sqrt{\sigma^2} \approx 185.2$$

2 a
$$\overline{X} = \frac{\sum X}{n}$$

$$=\frac{1\times 3+2\times 8+3\times 6+4\times 6+5\times 7}{3+8+6+6+7}=3.2$$

$$\sigma^2 = \frac{\Sigma x^2}{n} - \left(\frac{\Sigma x}{n}\right)^2$$

$$=\frac{1^2\times 3+2^2\times 8+3^2\times 6+4^2\times 6+5^2\times 7}{3+8+6+6+7}-3.2^2$$

$$\sigma = \sqrt{\sigma^2} \approx 1.33$$

b
$$\overline{X} = \frac{\sum X}{n}$$

$$=\frac{1\times 5 + 3\times 12 + 5\times 16 + 7\times 22 + 9\times 27 + 11\times 30 + 13\times 18}{5 + 12 + 16 + 22 + 27 + 30 + 18}$$

$$\sigma^2 = \frac{\Sigma X^2}{n} - \left(\frac{\Sigma X}{n}\right)^2$$

$$=\frac{1^2\times 5+3^2\times 12+5^2\times 16+7^2\times 22+9^2\times 27+11^2\times 30+13^2\times 18}{5+12+16+22+27+30+118}-8.323^2$$

$$\sigma = \sqrt{\sigma^2} = 3.33$$

$$\mathbf{c} \quad \overline{X} = \frac{\Sigma X}{n}$$

$$=\frac{5\times 18+15\times 14+25\times 13+35\times 11+45\times 6}{18+14+13+11+6}$$

$$\sigma^2 = \frac{\Sigma x^2}{n} - \left(\frac{\Sigma x}{n}\right)^2$$

$$=\frac{5^2\times 18+15^2\times 14+25^2\times 13+35^2\times 11+45^2\times 6}{18+14+13+11+6}-20.645^2\\=602.419-426.223=176.197$$

$$\sigma = \sqrt{\sigma^2} \approx 13.3$$

3 a
$$\overline{x} = \frac{\sum x}{n}$$

$$=\frac{1\times 2 + 2\times 2 + 3\times 4 + 4\times 10 + 5\times 12 + 6\times 2 + 7\times 2 + 18\times 1}{2+2+4+10+12+2+2+1}$$

$$= 4.63$$

$$\sigma^2 = \frac{\Sigma X^2}{n} - \left(\frac{\Sigma X}{n}\right)^2$$

$$=\frac{1^2\times2+2^2\times2+3^2\times4+4^2\times10+5^2\times12+6^2\times2+7^2\times2+18^2\times1}{2+2+4+10+12+2+2+1}-4.629^2\times10^{-2}$$

$$=28.571-21.424=7.148$$

$$\sigma = \sqrt{\sigma^2} = 2.67$$

b
$$\overline{X} = \frac{\sum X}{P}$$

$$=\frac{1\times 2 + 2\times 2 + 3\times 4 + 4\times 10 + 5\times 12 + 6\times 2 + 7\times 2}{2+2+4+10+12+2+2}$$

$$= 4.24$$

$$\sigma^2 = \frac{\Sigma X^2}{n} - \left(\frac{\Sigma X}{n}\right)^2$$

$$=\frac{1^2\times2+2^2\times2+3^2\times4+4^2\times10+5^2\times12+6^2\times2+7^2\times2}{2+2+4+10+12+2+2}-4.235^2$$

=
$$19.882 - 17.938 = 1.945$$

 $\sigma = \sqrt{\sigma^2} = 1.40$

$$4 \bar{X} = \frac{\Sigma X}{n}$$

$$= \frac{93 + 86.2 + 80 + 64 + 60.6 + 50 + 50 + 47.3 + 46.6 + 46}{10}$$

$$= 62.37$$

$$\sigma^{2} = \frac{\Sigma X^{2}}{n} - \left(\frac{\Sigma X}{n}\right)^{2}$$

$$= \frac{93^{2} + 86.2^{2} + 80^{2} + 64^{2} + 60.6^{2} + 50^{2} + 50^{2} + 47.3^{2} + 46.6^{2} + 46^{2}}{10} - 62.37^{2}$$

$$= 4177.27 - 3890.02 = 287.248$$

$$\mathbf{5} \quad \overline{X} = \frac{\Sigma X}{n}$$

 $\sigma = \sqrt{\sigma^2} = 16.9$

$$\begin{split} &=\frac{150\times3+250\times6+350\times11+450\times5}{3+6+11+5}=322\\ &\sigma^2=\frac{\Sigma x^2}{n}-\left(\frac{\Sigma x}{n}\right)^2\\ &=\frac{150^2\times3+250^2\times6+350^2\times11+450^2\times5}{3+6+11+5}-322^2\\ &=112100-103684=8416\\ &\sigma=\sqrt{\sigma^2}=91.7 \end{split}$$

- **6 a** 6+8+6+3+1=24 months
 - **b** The modal range is 20 to 30 hours

$$\mathbf{c} \quad \overline{x} = \frac{\Sigma x}{n}$$

$$= \frac{15 \times 6 + 25 \times 8 + 35 \times 6 + 45 \times 3 + 55 \times 1}{6 + 8 + 6 + 3 + 1}$$

$$\mathbf{d} \quad \sigma^2 = \frac{\Sigma x^2}{n} - \left(\frac{\Sigma x}{n}\right)^2$$

$$=\frac{15^2\times 6 + 25^2\times 8 + 35^2\times 6 + 45^2\times 3 + 55^2\times 1}{6 + 8 + 6 + 3 + 1} - 28.75^2$$

$$= 950 - 826.563 = 123.438$$

$$\sigma = \sqrt{\sigma^2} = 11.1$$

Exercise 6J

1 a mean =
$$\frac{1+3+5+5+8}{5}$$
 = 4.4 median = 5 mode = 5

b mean =
$$\frac{5+7+9+9+12}{5}$$
 = 8.4 median = 9 mode = 9

c Adds 4 to mean, median and mode

2 **a**
$$\bar{x} = \frac{\Sigma x}{n}$$

$$= \frac{7+9+3+0+1+8+6+4+10+5+5}{11} = 5.2727$$

$$\sigma^2 = \frac{\Sigma x^2}{n} - \left(\frac{\Sigma x}{n}\right)^2$$

$$= \frac{7^2+9^2+3^2+0^2+1^2+8^2+6^2+4^2+10^2+5^2+5^2}{11} = 36.909 - 27.802 = 9.11$$

$$\sigma = \sqrt{\sigma^2} = 3.02$$
b $\bar{x} = \frac{\Sigma x}{n}$

$$= \frac{21+27+9+0+9+24+18+12+30+15+15}{11}$$

$$= 15.8182$$

$$\sigma^2 = \frac{\Sigma x^2}{n} - \left(\frac{\Sigma x}{n}\right)^2$$

$$= \frac{21^2+27^2+9^2+0^2+9^2+24^2+18^2+12^2+30^2+15^2+15^2}{11} - 15.8182^2$$

$$= 332.182 - 250.215 ; 82.0$$

- **c** The mean is multiplied by 3, and since the variance is multiplied by 9, standard deviation (which is square root of variance) is multiplied by 3.
- 3 mean = 17.2 + 4 = 21.2median = 17 + 4 = 21standard deviation = 0.5

 $\sigma = \sqrt{\sigma^2} = 9.054$

- **4** The mean, median and standard deviation will double
- **5** The new variance is $9^2x = 81x$

Chapter Review

1 a mode = 1

b median =
$$\left(\frac{10+1}{2}\right)^{th} = 5.5^{th} = \frac{4+2}{2} = 3$$

c mean =
$$\frac{2+8+1+5+0+4+4+1+1+6}{10}$$

$$=\frac{16}{5}=3.2$$

d range =
$$8 - 0 = 8$$

$$2 \quad \frac{9 \times 420 + 3 \times 740}{12} = 500$$

b median =
$$\left(\frac{50+1}{2}\right)^{th} = 25.5^{th} = 3$$

mean =
$$\frac{0 \times 4 + 1 \times 8 + 2 \times 10 + 3 \times 20 + 4 \times 4 + 5 \times 3 + 6 \times 1}{50}$$

= $\frac{5}{3}$ = 2.5

4 The mean will increase by 4 and the standard deviation will stay the same; mean = 21.9, standard deviation = 1.1

5 a mean =
$$\frac{736}{23}$$
 = 32

b mean =
$$\frac{736 + 24 + 15}{23 + 2} = 31$$

6 a The mean will increase by 10 and the standard deviation will stay the same; mean = 58, standard deviation = 5

b The mean will increase by a factor of 10 and the variance will increase by a factor of 10^2 ; mean = 480,

variance =
$$5^2 \times 100 = 2500$$

7 a 40

b 60

c
$$50 = c - 40 \Rightarrow c = 50 + 40 = 90$$

d IQR =
$$24 = 74 - d \Rightarrow d = 74 - 24 = 50$$

8 a 800 students

b 65 marks

c
$$IQR = 75 - 55 = 20$$

d 100 students

e No, because there are 100 students who scored more than 80 marks, this is not 10%

f
$$k = 40$$

10a
$$\overline{X} = \frac{\sum X}{n}$$

 $=\frac{15+12+22+30+25+7+19+33+19+41+53+12+3+8+6+17}{16}$

= 20.125

$$\sigma^2 = \frac{\sum x^2}{n} - \left(\frac{\sum x}{n}\right)^2$$

 $=\frac{15^2+12^2+22^2+30^2+25^2+7^2+19^2+33^2+19^2+41^2+53^2+12^2+3^2+8^2+6^2+17^2}{16}$

= 579.375 - 405.016 = 174.359
$$\sigma = \sqrt{\sigma^2} = 13.2$$

b Write the numbers in size order; 3, 6, 7, 8, 12, 12, 15, 17, 19, 19, 22, 25, 30, 33, 41, 53

then find Q_1 as the median of the first half of the list.

$$Q_1 = \left(\frac{8+1}{2}\right)^{th} = 4.5^{th} = \frac{8+12}{2} = 10$$
 and

find $Q_{\rm 2}$ as the median of the second half of the list,

$$Q_1 = \left(8 + \frac{8+1}{2}\right)^{th} = 12.5^{th} = \frac{25+30}{2} = 27.5$$

, so IQR = 27.5 - 10 = 17.5

$$=\frac{2\times 3 + 3\times 4 + 4\times 10 + 5\times 3 + 6\times 2 + 7\times 2}{3+4+10+3+2+2}$$

= 4.125

median =
$$\left(\frac{24+1}{2}\right)^{th} = 12.5^{th} = 4$$

$$\sigma^2 = \frac{2^2 \times 3 + 3^2 \times 4 + 4^2 \times 10 + 5^2 \times 3 + 6^2 \times 2 + 7^2 \times 2}{3 + 4 + 10 + 3 + 2 + 2} - 4.125$$

$$= 18.875 - 17.0156 = 1.8593$$

 $\sigma = 1.36$

12 a
$$_{mean} = \frac{2.5 \times 15 + 7.5 \times 11 + 12.5 \times 9 + 17.5 \times 12 + 22.5 \times 6}{15 + 11 + 9 + 12 + 6}$$

≈ 10.9

median =
$$\left(\frac{53+1}{2}\right)^{th}$$
 = 27^{th} = 12.5
 $\sigma^2 = \frac{2.5^2 \times 15 + 7.5^2 \times 11 + 12.5^2 \times 9 + 17.5^2 \times 12 + 22.5^2 \times 6}{15 + 11 + 9 + 12 + 6} - 10.896^2$
= $166.627 - 118.728 = 47.8996$
 $\sigma = 6.92$

b Because we are using the midpoint of each range, as opposed to the actual original data, which assumes that the number of items is equally spread throughout the class interval.

13 Given that the mean number of watches is 2.5, we have to find k

$$2.5 = \frac{0 \times 11 + 1 \times 7 + 2 \times 6 + 3 \times k + 4 \times 8 + 5 \times 10}{11 + 7 + 6 + k + 8 + 10},$$

$$2.5 \times (42 + k) = 101 + 3k$$

$$105 + 2.5k = 101 + 3k$$

$$105 - 101 = (3 - 2.5)k$$

$$4 = 0.5k$$

$$k=\frac{4}{0.5}$$

$$k = 8$$

14a 80 bats

b 50 grams

$$\mathbf{c} \quad \frac{5}{80} = 0.0625 = 6.25\%$$

d
$$a = 10$$
, $c = 80 - 75 = 5$

e
$$b = 75 - 55 = 20$$

 $\sigma = \sqrt{\sigma^2} = 22.5$

$$f \quad \bar{x} = \frac{\sum x}{n}$$

$$= \frac{15 \times 10 + 45 \times 45 + 75 \times 20 + 105 \times 5}{10 + 45 + 20 + 5}$$

$$= 52.5$$

$$\sigma^2 = \frac{\sum x^2}{n} - \left(\frac{\sum x}{n}\right)^2$$

$$= \frac{15^2 \times 10 + 45^2 \times 45 + 75^2 \times 20 + 105^2 \times 5}{10 + 45 + 20 + 5} - 52.5^2$$

$$= 3262.5 - 2756.25 = 506.25$$

15a
$$50 = 3 + 11 + 16 + m + 8$$

 $\Rightarrow m = 50 - 38 = 12$
 $n = 14 + 16 = 30$

b
$$\overline{x} = \frac{\sum x}{n}$$

$$= \frac{10 \times 3 + 15 \times 11 + 20 \times 16 + 25 \times 12 + 30 \times 8}{3 + 11 + 16 + 12 + 8}$$

$$= 21.1$$

$$\mathbf{c} \quad \sigma^2 = \frac{\Sigma x^2}{n} - \left(\frac{\Sigma x}{n}\right)^2$$

$$= \frac{10^2 \times 3 + 15^2 \times 11 + 20^2 \times 16 + 25^2 \times 12 + 30^2 \times 8}{3 + 11 + 16 + 12 + 8} - 21.1^2$$

$$= 477.5 - 445.21 = 32.3$$

16a Discrete

b
$$\overline{x} = \frac{\sum x}{n}$$

$$= \frac{1 \times 41 + 2 \times 60 + 3 \times 52 + 4 \times 32 + 5 \times 15 + 6 \times 8}{41 + 60 + 52 + 32 + 15 + 8}$$

$$\approx 2.73$$

$$\mathbf{c} \quad \sigma^2 = \frac{\sum x^2}{n} - \left(\frac{\sum x}{n}\right)^2$$

$$= \frac{1^2 \times 41 + 2^2 \times 60 + 3^2 \times 52 + 4^2 \times 32 + 5^2 \times 15 + 6^2 \times 8}{41 + 60 + 52 + 32 + 15 + 8} - 2.731^2$$

$$= 9.25 - 7.4571 = 1.7929$$

$$\sigma = \sqrt{\sigma^2} = 1.34$$

- d 1 standard deviation above the mean is 2.731+1.339=4.07, so 15+8=23 families have more than one standard deviation above the mean mobile devices
- 17a Discrete A1
 b Continuous A1
 c Continuous A1
 d Discrete A1
- **18a** As the mode is 5 there must be at least another 5.

So we have 1, 3, 5, 5, 6 with another number to be placed in order R1 The median will be the average of the 3rd and 4th pieces of data. R1 For this to be 4.5 the missing piece of data must be a 4.

Thus a=5, b=4 A1 A1

b
$$\overline{x} = \frac{1+3+4+5+5+6}{6} = \frac{24}{6} = 4$$

M1 A

19a An outlier is further than 1.5 times the IQR below the lower quartile or above the upper quartile

UH	e upper quartile.	ΑI
i	mode = 8	A1
ii	median = 7	A1
iii	lower quartile = 3	A1
iv	upper quartile = 9	A1
	i ii iii	 i mode = 8 ii median = 7 iii lower quartile = 3 iv upper quartile = 9

c IQR = 6

$$1.5 \times IQR = 9$$

 $19 - 9 = 10$ M1
19 is the (only) outlier A1

20 a
$$\frac{\sum x}{10} = 70 \Rightarrow \sum x = 700$$
 A1

Let the new student's mass be s.

$$\frac{\sum x + s}{11} = 72$$
 M1

$$700 + s = 792$$
 A1
So $s = 92$ kg A1
b IQR = 10 A1

$$76 + 1.5 \times IQR = 76 + 15 = 91$$
 M1

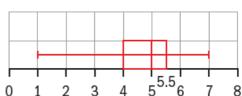
So new student's mass of 92 is an outlier R1

- **21a** 200 A1 **b** 35 A1
 - c Using mid-points 5, 15, 25... as estimates for each interval M1
 - i Estimate for mean is 22.25 A2ii Estimate for standard deviation is 11.6 (3sf)A2
 - **d** Median is approximately the 100th piece of data which lies in the interval $20 < h \le 30$.

Will be 15 pieces of data into this interval

Estimate is
$$20 + \frac{15}{50} \times 10 = 23$$
 M1A1

е



A1 general shape

A1 median

A1 quartiles

f IQR=1.5

$$1.5 \times 1.5 = 2.25$$
 (A1)
 $5.5 + 2.25 = 7.75$
 $4 - 2.25 = 1.75$ M1

So the 2 (unhappy) candidates with grade 1 are outliers A1

23 a

X	Frequency	Cumulative frequency
0	10	10
1	7	17
2	11	28
3	13	41
4	15	56
5	15	71
6	12	83
7	10	93
8	4	97
9	2	99
10	1	100

A4 for 6 correct A3 for 4 or 5 correct A2 for 2 or 3 correct A1 for 1 correct

b i 4

ii 2

iii 6 A1A1A1

c i 4.05 (3sf)

ii $(2.4140...)^2 = 5.83$ (3sf) A1(M1)A1

d No. It is bimodal at x = 4 and 5. 24 A1R1

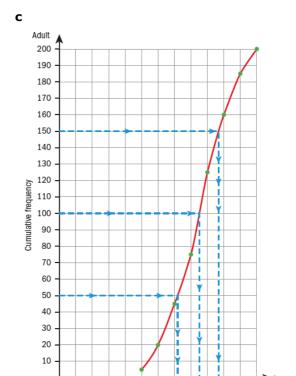
24 a $80 < w \le 90$

b

A1

mass	cumulative frequency
$40 < w \le 50$	5
50 < <i>w</i> ≤ 60	20
$60 < w \le 70$	45
70 < w ≤ 80	75
80 < <i>w</i> ≤ 90	125
90 < <i>w</i> ≤ 100	160
$100 < w \le 110$	185
110 < <i>w</i> ≤ 120	200

A2 numbers A1 labelling



A1A1scales A3 points and curve

10 20 30 40 50 60 70 80 90 100 110 120

d i 85 ii 73 iii 97 A1A1A1 M1 lines

25a i 7.5 ii 6.125 A1A2 b i 6 ii 6.9 A1A2

c Sally's had the greater median R1d Rob's had the greater mean R1

26 a

0

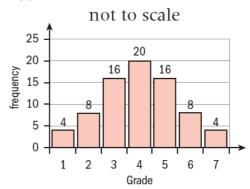


chart A1; scaleA2

b i 4 ii 4 iii 4 A1A1A1

 The values of the median and the mean are the same due to the symmetry of the bar chart.