Diskriminantti

* Toisen asteen yhtdlon ax? + bx + ¢ = 0 ratkaisujen lukumé&arin voi paatell3
diskriminantista D = b? — 4ac eli ratkaisukaavan juuren sisilli olevasta lausekkeesta.

* Jos D > 0, niin yhtalolla on kaksi ratkaisua.
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e Jos D = 0, yhtalolla on yksi ratkaisu (ns. kaksoisjuuri).
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* Jos D < 0, yhtalolla ei ole ratkaisuja. < Nelidjuurta ei voida laskea negatiivisesta luvusta.
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Epayhtild —2x2 + bx — 3 = 0 aina epétosi, jos vasemman puolen lauseke (merkitddn = f(x)) on
aina negatiivinen.

Funktion f(x) = —2x? + bx — 3 kuvaaja on alasp&in aukeava paraabeli, silli a = —2 < 0.

Funktio f saa vain negatiivisia arvoja, jos diskriminantti D = b? — 4ac < 0.
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Ratkaistaan ensin vastaava yhtild b% — 24 = 0.
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Diskriminanttia D = b? — 24 voidaan kuvata yldspain aukeavalla paraabelilla (koska b?:n kerroin 1 on
positiivinen).

Diskriminantti on siis negatiivinen, kun —2v6 < b < 2+/6.

Samoilla b:n arvoilla epayhtdld —2x2 + bx — 3 > 0 on aina (x:n arvosta riippumatta) epétosi.



