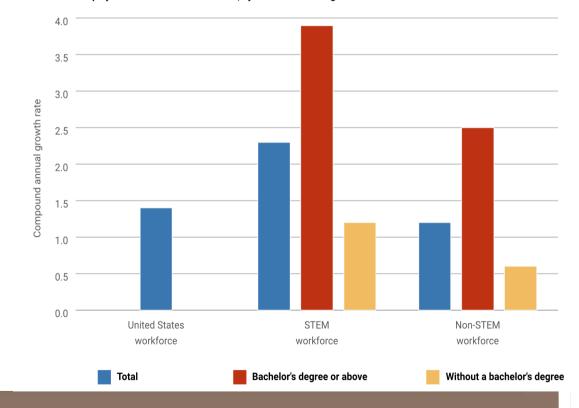


Examining the impact of a STEM intervention from a Social Cognitive Career Theory perspective

- J. Rossier ¹, S. Udayar ¹, S. Dépraz ², E. Schnapper ³, M. Gobet ⁴, & O. Naef ⁴
 - ¹Institute of Psychology, University of Lausanne, Switzerland
 - ²University of Applied Sciences and Arts Northwestern Switzerland, Olten, Switzerland
 - ³ Swiss Academy of Engineering Sciences, Zurich, Switzerland
 - ⁴ University of Applied Sciences and Arts Western Switzerland, Delémont, Switzerland

Jerome.Rossier@unil.ch | www.unil.ch/cepco | www.unil.ch/unisciences/JeromeRossier

Importance of STEM occupations


In our contemporary world of work, digitalization and technological develop-

ment plays a very important role.

The **STEM fields**, which stand for science, technology, engineering, and mathematics, represent an **important part of the economy**.

They offer the **best job prospects** with a **high number of jobs**, **low unemployment**, and **high salaries**.

In most Western countries, we expect a **continuous increase during** this decade of the number of jobs in the STEM fields, especially in the **IT sector**.

Projected employment by STEM occupational group, 2019–29

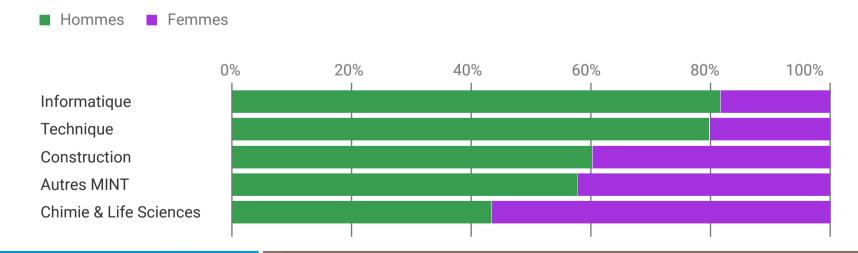
0	Emp	oloyment	Percent change	Employment change	
Occupation title	2019	2029	2019–29	2019–29	
STEM occupations	9,955.1	10,752.9	8.0	797.8	
Computer occupations	4,633.4	5,164.6	11.5	531.2	
Engineers	1,810.1	1,879.1	3.8	69.0	
Life scientists	344.8	361.4	4.8	16.6	
STEM post secondary teachers 1	294.1	308.8	5.0	14.7	
Physical scientists	276.6	291.4	5.3	14.7	
Mathematical science occupations	211.7	267.8	26.5	56.1	

¹ Aggregate employment for 11 different STEM post-secondary teacher occupations.

Notes: Employment numbers in thousands.

Not all STEM occupations are represented in the table above. A complete list of occupations included in the STEM definition is available at www.bls.gov/oes/stem_list.xlsx.

Source: U.S. Bureau of Labor Statistics.



STEM and gender segregation

Regrettably, however, **young women** currently seem to **have little interests** in these fields when it comes to choosing a training or a vocation.

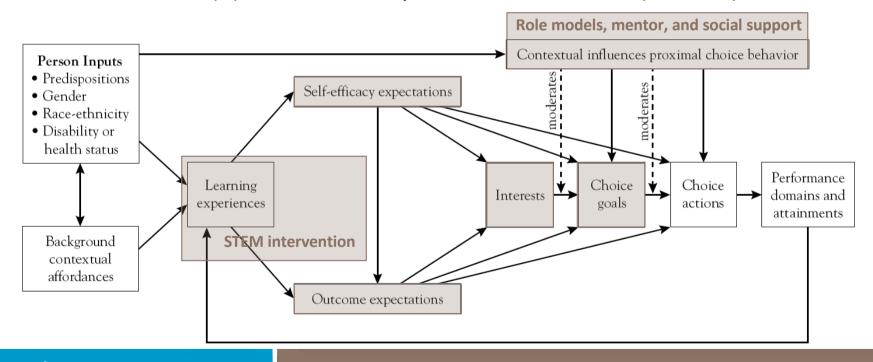
We thus observe a very important gender segregation.

Filières MINT: répartition selon le sexe, en 2022/23

STEM interventions

Many actors (schools, professional associations, etc.) propose STEM interventions to increase, typically young women, STEM interests, self-perceived abilities, self-efficacy, etc.

Swiss TecLadies is a mentoring program for girls aged 14 to 19 of the Swiss Academy of Engineering Sciences. It offers the opportunity to explore sciences and technology. Each young women has a female mentor that follows the mentee for the duration of the program (10 months). This program includes:


- Welcome Day, where participants meet their mentors and peers;
- **Activities** from September to April, including workshops, visits to companies, research centers and universities, and a personal career development workshop;
- Farewell Day and integration into the Swiss TecLadies Alumnae network.

The Social Cognitive Career Theory

The SCCT (Lent, Brown, & Hackett, 1994) suggests that (1) **learning experiences** impact **self-efficacy** and **outcome expectations**, (2) that impact **interests** and **career choices**, and (3) **moderated** by **contextual factors** (models).

Method

Participants

A **first sample of 916 participants** completed an online survey. They were recruited from the **general population** (partly at schools). They were in secondary education and aged M = 15.76, SD = 2.26.

A **second sample of 108 participants** benefitting from the *Swiss TecLadies* intervention, aged M = 13.90, SD = 1.13, completed a survey at the beginning (T0), in the middle (T0.5), and at the end (T1) of the intervention (attrition rate $\approx 10\%$).

Instruments

Self-efficacy for the STEM fields was assessed using the 5-item subscale of the *Science Motivation Questionnaire* (Glynn et al., 2011).

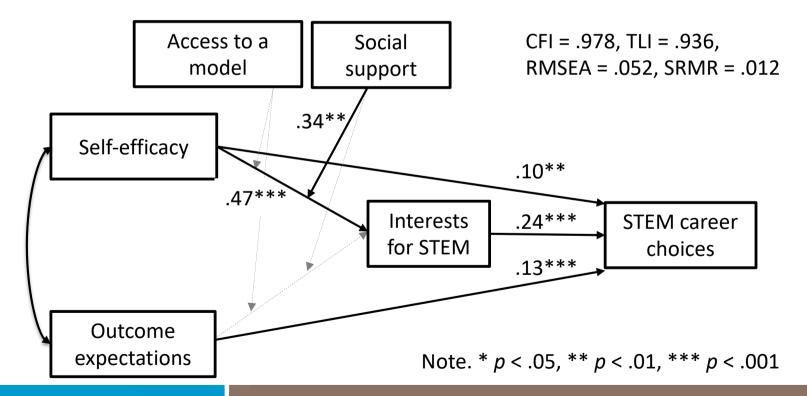
Method

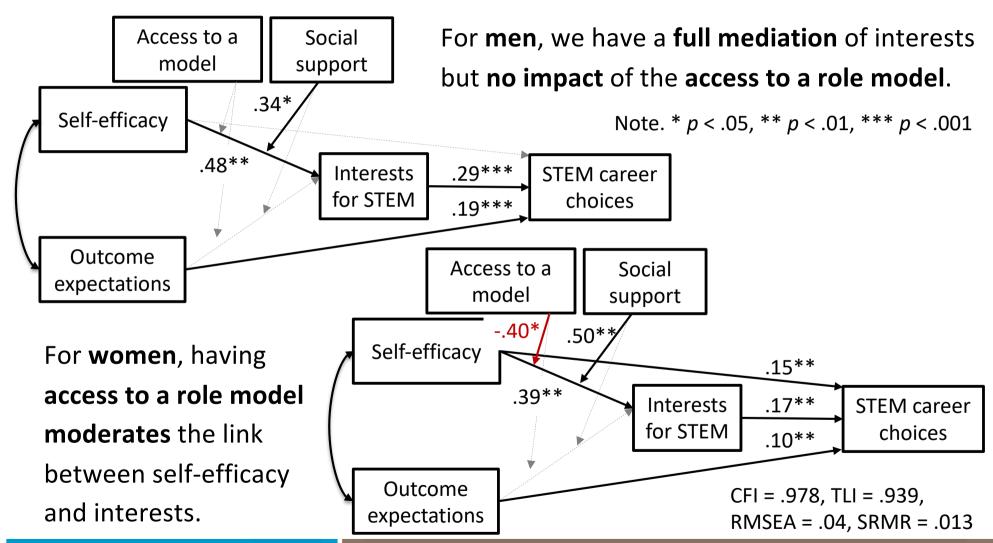
Outcome expectations for the STEM fields were assessed using a 7-item scale adapted from Lent and colleagues (2005).

Interests for the STEM fields were assessed using a 4-item scale asking students their level of interests for the 4 different fields.

Career choices were assessed by asking students their 3 first career options. These choices were after coded as belonging or not to the STEM fields.

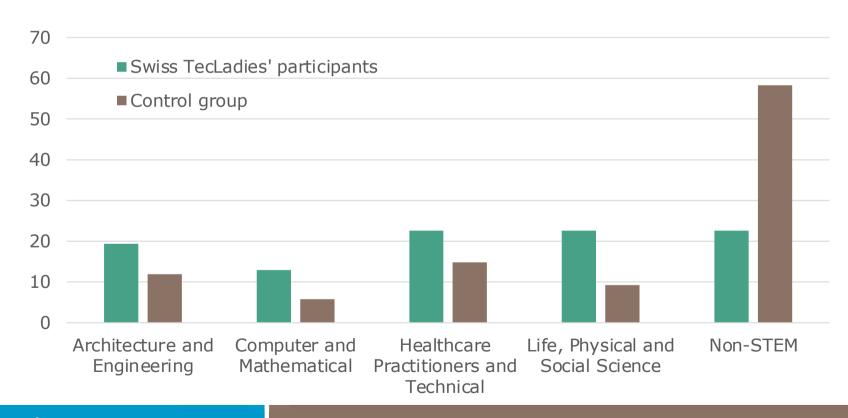
Social support and **Access to a role model** were assessed using a single item for each aspect.


Impact of the mentor was assessed with a 12-item scale developed for this research. It did assess four aspects, identification, competencies, support, and self-confidence (inspired by Gladstone & Cimpian, 2021).


The model in the general population

The overall **model fit our data**. **Social support moderates** the Self-efficacy-Interests-Choices mediation (moderated mediation effect)!

General population vs Swiss TecLadies participants


	N	М	SD	Swiss TecLadies	General population	d
Self-efficacy	673	3.38	.85	3.92 n = 108	3.22 n =565	0.70***
Outcome expectations	676	3.63	.58	3.98 n = 108	3.54 n = 568	0.44***
STEM interests	676	3.22	.90	3.87 n = 108	3.02 n = 568	0.85***
Mathematics performances	626	3.09	1.16	3.72 n = 107	2.88 n =519	0.84***

Note. * p < .05, ** p < .01, *** p < .001

The Swiss TecLadies' participants did express higher aspirations for STEM occupations already at TO.

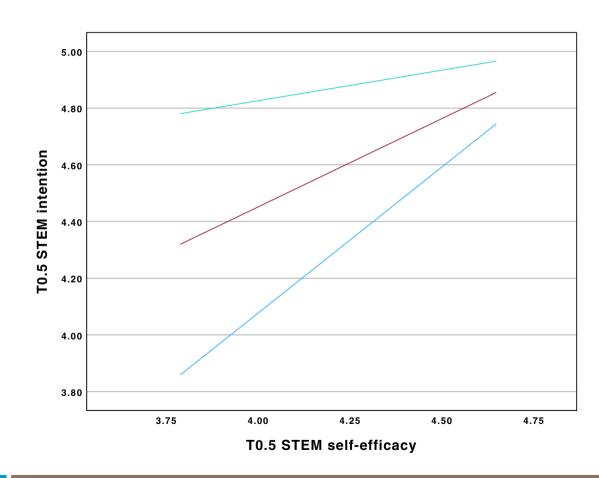
Pre-post-intervention Swiss TecLadies' participants

	Time	N	M	SD	d
STEM intentions	T0 T1	77 77	4.31 4.27	0.87 1.04	0.04
STEM Self-efficacy	T0 T1	77 77	3.98 4.14	0.53 1.03	-0.16*
STEM outcome expectations	T0 T1	77 77	4.05 4.27	0.53 0.56	-0.22***
STEM interests	T0 T1	77 77	3.97 3.96	0.65 0.54	0.01

Note. * p < .05, ** p < .01, *** p < .001

T_{0.5}

mentor


support ---3.00

> -4.00 -5.00

Swiss TecLadies: Impact of the mentor

The support of the mentor did moderate the link between self-efficacy and STEM intentions (B = -.41, p = .02) in the middle of the intervention (T0.5).

The impact of the mentor is especially high for participants with low self-efficacy.

Conclusion

Concerning the Social Cognitive Career Theory

- The SCCT is adequate to modelize the development of STEM interests and choices.
- The social support is important for men and women to actualize STEM selfefficacy in STEM interests and choices.
- Access to a model is important especially for women.

Concerning the Swiss TecLadies STEM intervention

- STEM interventions attract women that already have STEM interests, etc.
- STEM interventions increases women's self-efficacy and outcome expectations.
- The mentors support increases women's STEM intentions especially for those with low self-efficacy.

Acknowledgements

I would like to thank the members of our Research Center in Vocational Psychology and Career Counseling (CePCO), our colleagues, partners, and our funding agency.

Hes·so

Haute Ecole Spécialisée de Suisse occidentale

Fachhochschule Westschweiz

University of Applied Sciences and Arts Western Switzerland

swissuniversities

Acknowledgements

Thank you very much for your attention!