The effect of selected soil properties and field management on cereal yields

 Tapio Salo, Riikka Keskinen, Helena Soinne, Mari Räty, Janne Kaseva, Visa Nuutinen, Eila Turtola

Agricultural soil quality

- Soil quality is often evaluated through measurable biological, chemical and physical key indicators selection of which depends on the type of ecosystem in question and overall objectives of the assessment scheme (e.g. Andrews et al., 2002)
- The most frequently used indicators include
 - pH, organic matter or carbon content, total or available nutrient and harmful metal concentrations, cation exchange capacity, electrical conductivity, soil depth, texture, bulk density, porosity, aggregation, structural stability, penetration resistance, water storage and infiltration properties, earthworm density, microbial biomass, soil respiration and nitrogen mineralization (Bünemann et al., 2018).

Selection of field plots

- The study comprised in total of 47 sampling sites located in two clusters in southwestern and central-eastern Finland
- The plots were selected among fields of mineral soil (<10% organic carbon) on which a cereal crop was designated to be sown.
- The selection was based on yield records over the previous years and on the practical experience of the station managers and field staff, so that both fields regarded of high and low productivity were included.
- Farm managers of experimental farms and farmers were interviewed in order to get information from management of the selected fields.

Location of fields

- Luke farms:
 - Jokioinen, 2016-2017, n=14
 - Maaninka 2016-2017, n=4
- Farms, 2017
 - Uusimaa, n=4
 - Varsinais-Suomi, n=5
 - Satakunta, n=4
 - Häme, n=4
 - Maaninka, n=9

Methods

Sampling and analysis

- Representative central sampling point and three surrounding sampling points that were placed on a circle to around 5 m distance from the central point were located.
- From all of these four sub-sampling sites, yield, soil profile and soil aggregate samples were collected.
- In addition, a soil fertility sample was taken from each central sampling point.
- Yield samples were collected after ripening by cutting down the entire plant stand within a 75 \times 75 cm frame
- In addition, two different sampling techniques were compared by harvesting crop from selected fields with a 75 cm × 75 cm quadrat frame method and trial plot harvester during 2016–2017.

Yield samples

- 475cm x75 cm quadrat plots per field and year
- Compared to field harvester yields

Quadrat yield, kg DM ha⁻¹

Sampling of soil profile

- Soil profile samples were taken from the plant row by an auger with c. 4.5 cm diameter to a maximum depth of 60 cm.
- Soil cores were cut within the auger to 10-cmlength segments.
- Roots appearing at the opposite fresh broken faces were counted.
- Thereafter the soil core segments were dried at 40 °C and weight to determine bulk density of the soil layers.
- Finally, the samples were ground to pass a 2-mm sieve and analyzed for total C and N via dry combustion (Dumas method, Leco TruMac CN).
- Soil aggregates were sampled from 0-5 cm
- Soil fertility samples were taken from 0-20 and 20-40 cm

The effects tested in the statistical analysis

Categorical variables	Classes	Values
Cultivation zone	3	South-west, Häme region, East
Сгор	4	Barley, Oats, Spring rye, Wheat
Soil type	3	< 30% clay, 30-60% clay, > 60% clay
Sampling year	2	2016, 2017
Crop rotation	2	Cereal monoculture, other crops included
Soil management	2	Ploughing, Other
Use of lime	3	< 10 years, 10-20 years, > 20 year
Use of organic fertilisers	2	No, Yes in last 10 years
Hydrological quality	2	Poor, Good
Field quality	2	Poor, Good

The effects tested in the statistical analysis

Soil measurements Continuous	N	Range
Carbon %	60	1.3-9.1
Clay % / Carbon %	60	0-22
Soluble P (mg l ⁻¹)	60	0.7-27.3
Soluble Ca mg l ¹	60	265-4205
Soluble Mg mg l ¹	60	48-1336
Soluble K mg l ¹	60	60-464
EC 10xmS cm ¹	60	0.54-1.86
рН	60	5.1-7.0
CEC (meq 100g ⁻¹)	60	1.7-34.0
Ca CEC (meq 100g ⁻¹)	60	1.2-22.8

Field management		
N rate kg ha ¹	60	54-180

Carbon and soil types (classification based on clay content)

Table X. Correlation of clay and carbon with other measured soil properties.

Variable	Clay %	Carbon %
Carbon %	0.51	
Nitrogen %	0.62	0.97
Clay/Carbon	0.80	-0.04
Soluble P (mg l ⁻¹)	-0.46	-0.36
Soluble Ca (mg l ⁻¹)	0.81	0.27
Soluble K (mg l ⁻¹)	0.84	0.15
Soluble Mg (mg l ⁻¹)	0.78	0.34
EC	0.00	0.13
рН	0.11	-0.38
CEC (meq 100g ⁻¹)	0.93	0.39
Ca CEC (meq 100g ⁻¹)	0.87	0.45
Mg CEC (meq 100 g ⁻¹)	0.86	0.21
K CEC (meq 100 g ⁻¹)	0.83	0.43
WSA %	0.51	0.38
Turbidity	0.70	-0.01
Bulk density (kg dm ³)	-0.22	-0.50
Root number cm ²	0.44	0.29

Table X. Correlations of soil properties and fertiliser applications (p<0.05) with yield. (N=45)

	Yield (kg ha [`])			
	Corr	р		
Clay %	-0.38	0.011		
Silt %	0.48	0.001		
Soluble Mg (mg l ⁻¹)	-0.41	0.005		
Soluble K (mg l ^¹)	-0.46	0.001		
CEC (meq 100 g ⁻¹)	-0.34	0.022		
Mg CEC (meq 100 g ⁻¹)	-0.43	0.004		
K CEC (meq 100 g ⁻¹)	-0.46	0.002		
WSA	-0.51	0.000		
N rate (kg ha ⁻¹)	0.70	<0.001		
N rate split (kg ha ⁻¹)	0.65	<0.001		
Org. N (kg ha ⁻¹)	-0.29	0.050		
Yield history (kg ha ⁻¹)	0.45	0.002		

Table x. The estimates and probabilities of selected variables in Model 1(Carbon content) and Model 2 (Clay to carbon ratio). Pr > 0 shows the probability that estimate would be 0. P shows the probability that effect would not be significant.

	Model 1 (Ca	arbon)			Model 2 (Clay/Carbon)		
Effect	Value	Estimate	Pr > 0	P	Estimate	Pr > 0	Ρ
Intercept		-2996	0.0143		-829	ns.	
Cultivation zone	South-west	2335	0.0003	<0.001	2192	0.0024	0.009
	Häme	2410	0.0002		1795	0.0099	
	Eastern	0	•		0	•	
Crop	Oats	-315	ns.	<0.001	-391	ns.	0.011
	Barley	1327	0.0009		1037	0.0155	
	Spring rye	2193	0.0152		1429	ns.	
	Wheat	0			0		

	Carbon model				Clay/carbon model			
Soil type	Clay >60%	-1614	ns.	0.003	1330	ns.	0.447	
	Clay 30-60%	-2770	0.0008		1143	0.263		
	Clay <30%	0	•		0	•		
Liming	< 10 years	1952	0.002	0.001	1157	0.1313	0.102	
	10-20 years	493	ns.		220	ns.		
	> 20 years	0	•		0	•		
Hydrology	Poor	-2397	<.0001	<0.001	-1787	0.0032	0.003	
	Good	0			0			
Soluble Ca		-1.82	<.0001	<0.001	-1.34	0.0024	0.002	
Soluble Mg		3.06	0.0111	0.011	3.42	0.0319	0.032	
Soluble P		-26.38	ns.	0.031	-63.4	0.1023	0.060	

	Carbon model				Clay/carbon model			
Carbon		638	<.0001	<0.001	•	•	•	
Clay/Carbon				•	-11.07	ns.	0.007	
N rate		61.4	<.0001	<0.001	60.0	<.0001	<.0001	
Soluble P in clay >	• 60%	29.83	ns.	0.001	184	0.1067	0.008	
Soluble P in clay	30-60%	343	0.0002		284	0.0035		
Soluble P in clay <	< 30%	0	•		0	-		
Clay/Carbon in clay > 60%		•	•	•	-207	0.0759	0.029	
Clay/Carbon in clay 30- 60%		•	•		-227	0.0089		
Clay/Carbon in cla	ay < 30%				0	-		
Coefficient of determination between observed and predicted values			0.85			0.82		

Kiitos!

Luke: Tapio Salo[,] Riikka Keskinen, Visa Nuutinen, Mari Räty, Eila Turtola, Janne Kaseva, Helena Soinne Syke: Katri Rankinen, José Cano Bernal. Pirkko Kortelainen, HY: Matti Sihvonen, Sampo Pihlainen, Kari Hyytiäinen, Sanna Kanerva

